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Resumo

O uso de enxames robóticos pode ser melhor explorado em um futuro próximo devido a
suas vantagens, como a redundância por construção e a tendência de redução de custos na
fabricação de robôs. Para esse tipo de sistema se tornar viável, precisamos de algoritmos
de navegação eficientes para resolver muitos problemas que ainda estão abertos. Este
trabalho aborda o problema de segregação em enxames de robôs. Esse problema consiste
em segregar robôs heterogêneos, onde grupos menores de robôs homogêneos são formados a
partir de um grupo heterogêneo maior e os grupos menores devem segregar. Para resolver o
problema da segregação em um enxame robótico deve-se projetar leis de controle individual
para fazer com que todos os robôs de um mesmo tipo se agrupem, mantendo distância de
outros grupos.

Uma vantagem desejável em um enxame de robôs é o controle descentralizado, ou seja,
cada robô faz uso apenas de informações locais, disponíveis em seus arredores. Todos os
controladores propostos neste trabalho têm algum grau de descentralização, ou seja, os
robôs não precisam de informações sobre todo o sistema o tempo todo. Propomos diferentes
controladores para robôs modelados como duplo integradores (atuados em aceleração).
Apresentamos controladores baseados em duas ideias principais diferentes.

A primeira ideia consiste em criar abstrações que representam cada grupo e depois
separar as abstrações. Cada abstração é formada usando informações sobre a posição de
todos os robôs de um grupo. Depois que as abstrações são criadas, o centro das abstrações
é segregado através de forças artificiais provenientes de uma função potencial artificial.
Com essa ideia, dois controladores são propostos. O primeiro controlador apresenta alguma
descentralização em alguns momentos. Também é apresentado para este controlador um
esquema para evitar colisões e uma prova formal de convergência para segregação. No
segundo controlador, há mais interesse em usar informações locais. Assim, os estados das
abstrações serão obtidos por estimadores descentralizados. As colisões entre robôs não
são evitadas e não há prova de convergência, embora o algoritmo seja desenvolvido para
facilitar a obtenção de uma possível prova de convergência.

A segunda ideia é o uso de pontos virtuais conectados aos robôs, juntamente com um
algoritmo de consenso para orientar o movimento dos robôs. Além disso, propomos uma
heurística para alterar os pontos virtuais de forma que cada grupo de robôs permaneça
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coeso enquanto segregam dos robôs de outros grupos. Essa ideia também é usada para
lidar com um problema de segregação ligeiramente diferente: segregação radial. Nesse
problema, todos os robôs devem convergir para um estado onde robôs do mesmo tipo estão
posicionados a uma mesma distância em relação a um determinado ponto, enquanto essas
distâncias são diferentes para robôs de diferentes tipos.

Para todos os controladores, mostramos simulações e, para alguns, também mostramos
resultados experimentais. Simulações e experimentos validam as estratégias que permitem
que um enxame de vários robôs heterogêneos se segregue em grupos.
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Abstract

The use of robotic swarms might be better exploited in a near future due to its advantages,
such as the redundancy by construction and the tendency of cost reduction in robots
fabrication. To this type of system become viable, we need efficient navigation algorithms
to solve many issues that are still open. This work tackles the problem of segregation in
robot swarms. This problem consists in segregating heterogeneous robots, where smaller
groups of homogeneous robots are formed from a bigger heterogeneous group and the
smaller groups should segregate. To solve the problem of segregation in a robotic swarm
one should design individual control laws to make all robots of the same type form clusters
while maintaining distance from other groups.

A desirable advantage in a robot swarm is the decentralized control, that is, each
robot should make use of only local information, available from its surroundings. All the
controllers proposed in this work have some degree of decentralization, that is, robots
do not need information about all the elements in the system all the time. We propose
different controllers for robots modeled as double integrators (actuated in acceleration).
We present controllers based on two different main ideas.

The first idea consists in creating abstractions that represent each group and then
separate the abstractions. Each abstraction is formed using information about the position
of all robots in a group. After the abstractions are created, the center of the abstractions
are segregated through artificial forces that come from an artificial potential function. With
this idea two controllers are proposed. The first controller presents some decentralization
in some moments. It is also presented for this controller is a scheme to avoid collisions
and a formal proof of convergence to segregation. In the second controller, there is more
interest in using local information. Thus, the states of the abstractions are obtained by
decentralized estimators. Collisions between robots are not avoided and there is no proof
of convergence, although the algorithm is developed in order to facilitate future proof of
convergence.

The second idea is the use virtual points attached to robots together with a consensus
algorithm to guide the movement of the robots. Furthermore, we propose a heuristic
to change the virtual points in a way that each group of robots stays together while
segregating from robots of other groups. This idea is also used to deal with a slightly

ix



different segregation problem: radial segregation. In this problem, all the robots should
converge to a state where robots of the same type are positioned at the same distance
from a given point while these distances are different for robots of different types.

For all the controllers we show simulations, and for some, we also show experimental
results. Simulations and experiments validate the strategies that allow a swarm of multiple
heterogeneous robots to segregate into groups.
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1
Introduction

Robotic swarms are systems formed by numerous relatively simple robots that interact
with each other to solve a task that is beyond each robot individual capabilities Dorigo &
Sahin (2004).

Robot swarms are commonly inspired in nature; in the way birds fly in formation or in
the way fish schools aggregate to accomplish a common goal. In a robot swarm, usually
each robot is a simpler one if compared with state-of-the-art robots. That is because
applications with robot swarms are focused on what a swarm can do as a group rather than
in what each robot can accomplish individually. Furthermore, one of the most important
characteristics of a swarm of robots is its intrinsic tolerance to individual robot failures,
since the global effect of a few damaged robots is usually attenuated by the large number
of robots in the swarm. Those systems are controlled via local control laws and usually
have limited communication and sensing capabilities due to hardware restrictions.

Another advantage of robot swarm applications is the possibility of adding and sub-
tracting robots. As individual robot technology improves, the swarm can be increased
without having to replace all robots in the swarm, thereby increasing its ability to perform
tasks as a whole. It also means that, if needed, robots can be removed to reduce the
swarm size.

Some researchers have been able to build real highly scalable swarms. In Klingner et al.
(2014) a swarm of 100 real robots is used and in Rubenstein et al. (2014), for the first
time, a swarm of 1000 real robots is presented. In Trenkwalder et al. (2017) an operational
system is designed for miniature robots with limited on-board resources, similar to the

1
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ones in Klingner et al. (2014) and Rubenstein et al. (2014).
An interesting application of a robot swarm is shown in O’Hara et al. (2014), where a

swarm formed of floating boats is connected to form a bridge. In Sartoretti et al. (2016) a
swarm of boats is used to manipulate a floating object. In Soleymani et al. (2015) a swarm
autonomously construct a protective barrier. Other previously considered applications are
perimeter surveillance (Pimenta et al., 2013a), spill detection (Zhang et al., 2013), image
capturing for entertainment (Remes et al., 2013), target enclosure (Kubo et al., 2014) and
trapping (Zhang et al., 2018), interaction with humans (Recchiuto et al., 2016), (Walker
et al., 2014), (Nagi et al., 2014) and manipulation of objects (Marino & Pierri, 2018).

1.1 Motivation

There are many real world applications that can make use of robotic swarms, most of
these applications are still in research phase. One can think of a robotic swarm locating
victims of a natural disaster in unsafe scenarios, or, in the field of bio-medical engineering,
several robots inside a patient checking the functioning of internal organs.

Although most swarm applications are still conceptual, it is possible to see some real
world applications emerging nowadays. Two examples are the Kiva robots at Amazon’s
warehouse that are used to sort delivery packages (Guizzo, 2008), (Wurman et al., 2008)
and Intel’s drone light show that are used for entertainment, as in the 2017 Superbowl
halftime show (Burns, 2017). One can think of situations where it would be useful in
both applications to have heterogeneous robots. Heterogeneous robot swarms are those
formed by different types of robots, these differences can be in the available sensors and/or
actuators, locomotion capabilities or even in the role to be played when performing a task.
Generally, if the global task can be decomposed into smaller sub-tasks, it is beneficial
for the system’s performance to have teams of heterogeneous robots (Knudson & Tumer,
2010). In Amazon’s warehouse robots could have different payloads and Intel’s drones
could have different light effects. We can imagine that in these scenarios one could wish to
assign different tasks to different types of robots. Depending on the task, the robots of the
same type might have to exchange information and take decisions together autonomously.
Thus, in order to have real autonomous systems and to guarantee good communication
performance among the agents it seems to be interesting to endow such heterogeneous
swarms with the ability to autonomously segregate, i.e grouping robots of the same type
while staying apart from robots of other types.

Swarm robotics is a recent field of study with several interesting problems to be
addressed in order to allow its massive use in real world. One of these problems is this
so-called swarm segregation. As described in the last paragraph, this problem appears
whenever it is necessary to separate a swarm of heterogeneous robots into different groups
composed of robots of the same type.
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There are two different types of segregation: radial segregation and cluster segregation.
To solve these problems one should formulate individual control laws to guide the move-
ments of the robots. Regarding the radial segregation, the controller must guide all the
robots to a configuration in which the robots of the same type are positioned at the same
distance in relation to a global reference point and robots of different types are positioned
at different distances in relation to that point. Furthermore, to solve the problem of cluster
segregation, the controller must make all the robots of the same type group together while
maintaining segregation from robots of different types.

As an example of a more practical application of heterogeneous swarms and segregation
algorithm, one can think of the use of these systems in real world surveillance tasks. We
can imagine a swarm composed of heterogeneous drones: some with good surveillance
equipment (cameras, sensors, etc.), some with worse sensors but better battery autonomy,
some with hardware suitable to communicate with the authorities at longer distances,
etc. Imagine that two groups of perpetrators are identified by the robots and have to be
monitored by these robots to help the authorities. Suppose the perpetrators are fleeing in
different directions: one group fleeing on foot and the other group fleeing by car. Although
in this work we do not address the issue of forming groups according to the tasks to be
performed, it seems logical to form different groups of robots to follow the perpetrators
and help the authorities. For our scenario, drones with better autonomy can follow the
perpetrators fleeing by car and drones with better surveillance equipment can follow
the perpetrators on foot. The drones with good communication hardware can divide
themselves into two groups and each one of these groups can be incorporated in one of
those groups previously defined to follow the targets to provide communication. After
the assignment of the tasks to each group, it might be interesting to spatially segregate
the groups so that the robots of the same group can interact with each other without the
interference of nonmember agents in order to autonomously make important decisions
related to the task. This could be done manually by the authorities, but if we imagine
scenarios with dozens or more robots this would be a slow and tedious task, thus there is
the need of an autonomous segregation algorithm such as the one proposed in this work.

Note in the last example that each group of drones is not necessarily formed by drones
with the same hardware. In this work we consider robots to be of the same type if they
were assigned to the same group regardless of its construction or role in the task. In this
work we consider the segregation of robots to be an intermediary step in the execution of
a task which is given to the swarm by a high level mission planner. This step might be
needed whenever it is beneficial for the task to have a meeting of the robots of the same
group to make collective decisions before actually executing the task.

We envision automated systems that use heterogeneous swarms of robots to perform
multiple independent complex tasks. Those systems could be built by combining three
hierarchical layers. In the first layer Multi-Robot Task Allocation problems (MRTA)
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(Gerkey & Matarić, 2004) are solved to assign robots to groups; in the second layer the
groups spatially segregate to have inner group interactions; and in the third layer each
group accomplishes the task that better matches the capabilities of the group. This work
focuses in the second layer responsible to solve the problem of spatially segregating robots.

There are some advantages in spatially segregating robots in groups before proceeding
to do a task. A clear advantage is that if robots are spatially close it is easier for them to
communicate with each other, reducing communication interference. Another advantage is
that they will form smaller sub-swarms, thus reducing the complexity of treating inter-robot
collisions.

Unlike other works in swarm segregation, this work proposes distributed techniques to
segregate multiple groups, instead of only two groups, and presents formal proofs that the
system converges to segregation as desired.

1.2 Objectives

The general objective of the work is to find ways to solve the problem of segregation in
swarms of heterogeneous robots composed of several groups in which it is possible to make
the proof of convergence for segregation of this system.

The specific objectives are:

1. Develop techniques to use less information from the point of view of each robot.

2. Couple controllers to avoid collisions that do not interfere with the developed
techniques.

3. Test, via simulations, the feasibility of the proposed algorithms.

4. Conduct experiments with real robots using the developed algorithms.

1.3 Contributions

This doctoral thesis is the continuation of the master’s thesis of the same author that have
originated two articles:

1. Segregating Multiple Groups of Heterogeneous Units in Robot Swarms using Ab-
stractions. Presented at IEEE/RSJ International Conference on Intelligent Robots
and Systems 2015 (IROS), September 2015, Hamburg, Germany. (Ferreira Filho &
Pimenta, 2015b).

2. Segregação de Enxames de Robôs Heterogêneos do Tipo Integrador Simples em
Múltiplos Grupos usando Abstrações. Presented at the Simpósio Brasileiro de
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Automação Inteligente 2015 (SBAI), October 2015, Natal, Rio Grande do Norte,
Brasil. (Ferreira Filho & Pimenta, 2015a).

Both articles use an approach that is based on the use of abstractions (Belta & Kumar,
2003) and artificial potential functions (Olfati-Saber, 2006). Abstractions are virtual
entities used to represent a group of robots. The articles differ mainly in the assumed robot
model. Collisions were treated only in the second article, in which robots are modeled as
first order integrators.

In this thesis we present further contributions in the approach using abstractions such
as:

• Collision avoidance integrated in the segregation controller for the second integrator
robot model;

• A controller to dissipate high velocities generated mainly by the new collision
avoidance mechanism;

• A proof of convergence for the new controller in which groups segregate, avoid
collisions and also avoid high velocities;

• New simulation and experiments including experiments with noisy measurements;

• The use of estimators to reduce the exchanged information each robot uses to achieve
segregation.

Those new contributions (excluding the estimators) have generated a new journal article:

• Abstraction based approach for segregation in heterogeneous robotic swarms. Pub-
lished at the Robotics and Autonomous Systems from Elsevier in December 2019.
(Ferreira Filho & Pimenta, 2019a).

In this document, we dedicate a chapter to present the original controller for robots
modeled as double integrators along with the new contributions (Chapter 3).

Furthermore, a new approach to segregate groups of robots have been proposed (Chapter
4). This approach uses virtual points attached to the robots and a consensus algorithm
to segregate the groups based on a hierarchy between groups. This new approach have
generated two new articles:

1. Decentralized Radial Segregation in Heterogeneous Swarms of Robots. Presented at
the IEEE 58th Conference on Decision and Control (CDC), December 2019, Nice,
France. (Ferreira Filho & Pimenta, 2019b).

2. Segregation of Heterogeneous Swarms of Robots in Curves. To be presented at the
International Conference on Robotics and Automation (ICRA), June 2020, Paris,
France. (Ferreira Filho & Pimenta, 2020).
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Figure 1.1: Fluxogram of the organization of the methodology.

Both articles are based on similar ideas, however, the first article focuses on the segregation
of groups of robots radially and the second article focuses on the segregation of groups of
robots in which the groups are constrained to pre-established curves.

1.4 Document Organization

This document is organized as follows. The next Chapter discusses some related work in
the field, focusing on works that aim to solve the problem of segregating swarms of robots
into multiple groups. In Chapters 3 and 4 the methodology is presented, in which we
present in Chapter 3 the approach based on abstractions and in Chapter 4 the approach
based on virtual points attached to the robots. Figure 1.1 shows a scheme detailing
how the methodology is distributed in Chapters 3 and 4. In Chapter 5, simulations and
experiments for both approaches are presented. In Chapter 6 we conclude this work and
propose possible avenues for future work. Finally, the Appendix A gives some fundamental
principles that were useful in both methodologies of Chapters 3 and 4.



2
Related Work

Given the recent technological advances that made it possible to construct robotic swarms
and the vast number of possible applications, we can predict that swarms will play an
important role in the society of the future. In this section we discuss some important
related works previously developed in swarm robotics.

There are several ways to formulate control laws to coordinate a multi-robotic system
to accomplish a task. For example, one could individually guide each robot to a desired
position so that the desired coordination is achieved. This is unpractical or even impossible
depending on the number and capabilities of robots and operators and the task to be
accomplished. A better solution is to endow the robots with autonomous capabilities so
that they autonomously make decisions and navigate themselves over the environment.
The autonomous control of robots can be subdivided into: offline design of behaviors and
embodied evolution (Bredeche et al., 2018). Offline design are those sets of control laws
that are embedded into the robots before they are deployed and can be activated when
a certain emergent behavior of the swarm is needed to accomplish a task. Embodied
evolution deals with robots that can change their control laws on-the-fly according to the
requirements of the task. In this work we propose offline designed control laws that can
be embedded in robots and activated whenever it is required by a task.

The advantage in our design in comparison to a pure embodied evolution approach is
that we can formally prove that with our controllers the proposed behavior will emerge,
which means it will always happen, what is not usually the case in embodied robotics
systems, as it is the case in (Yong & Miikkulainen, 2009), (Nitschke et al., 2012) and
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(Trueba & Duro, 2013). Nonetheless, we believe the evolution based approaches might be
used together with our methods in real applications in which our work can be used as an
intermediary step between the high-level decision on the composition of the groups and
the low-level execution of the tasks by each group.

Once the members of the groups are properly chosen it might be necessary that
the robots of the groups get together before the execution of the task to communicate
and take decisions regarding this execution. In this case, it makes sense to activate a
segregative behavior so that the members of the groups can exchange information without
the interference of non-members agents. Thus, our controllers can be used to guarantee
that the groups will be segregated in the way required by the application before proceeding
to actually do a given task.

Next, we review some important work in autonomous control, focusing on methods to
navigate swarms of robots and providing some examples to illustrate possible applications
with such swarms.

2.1 Swarms of Robots

Navigation algorithms can be divided from the point of view of the information needed for
the controller: centralized control and decentralized control. In the centralized approach,
there is a unit responsible for sending control actions to each robot obtained with the
knowledge of global information. The great advantage of this type of system is that it
is easier to solve navigation problems, because the controller unit has the information of
all robots of the system. In decentralized control, each robot generates its control action
from local information only. This can be a great advantage, as communication and sensing
systems usually have limited range. There are also proposals that combine some aspects
of each method.

Modeling the swarm navigation problem in individual navigation problems with cen-
tralized solution is usually not very efficient, because one should plan the movement of a
very large system, which requires very elaborate algorithms with high computational cost.
In addition, the size of the problem grows as robots are added. In Choset et al. (2005) and
LaValle (2006) a review of these navigation algorithms is presented for a single robot, but
they do not directly address robot swarm problems. There are some works that address
robot swarm problems using different methods to formulate control laws that make robots
navigate according to the established problem.

We further divide the navigation methods into two types: with homogeneous robots
and with heterogeneous robots. Heterogeneous robot swarms are those where there are
robots that are different, either in its construction or in the role each robot will play in
pursuit of the swarm’s goal. Swarms with homogeneous robots are those in which their
robots have no distinction.
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2.1.1 Swarms with Homogeneous Robots

Behavior-based models were the first types used in an attempt to control swarms virtually
in the context of computer graphics (Reynolds, 1987). These models define behaviors that
must be activated under predetermined conditions. In Reynolds (1987) the goal was to
simulate animal movements in “flocks” for computer graphics purposes. A behavior-based
model is used in which each virtual animal has three possible behaviors: avoiding collisions
with surrounding animals, trying to stay close to the surrounding animals, and trying to
achieve the same speed as the surrounding animals. Each of these behaviors is turned on
or off as needed, giving rise to a global “flock” behavior. Balch & Arkin (1998) also uses a
behavior-based model, but to control a group of robots, causing them to maintain desired
formations, which are based on those used by the US Army platoons on the battlefield.

Alternatively, some works are based on artificial forces derived from potential functions.
These methods that use potential functions usually make use of the gradient of these
functions to guide the robot to the goal. Thus, the targets of each robot act as attractive
forces and obstacles as repulsive forces, and the other robots in the swarm are modeled
as obstacles from the point of view of the robot of interest. In (Tanner et al., 2005)
potential function-based forces are used to avoid collisions between non-holonomic robots
as they cluster together. In Chaimowicz et al. (2005) and Hsieh et al. (2008) such artificial
forces are used to make robots spread out in complex curves (in two dimensions) while
maintaining a separation between robots. Some of the approaches proposed in this work
also makes use of artificial forces, and they will be further detailed in the section 3.1.3.

There are other approaches, such as using smoothed particle hydrodynamic properties
to control robots in a distributed way, making them “flow” through the environment, as
in Perkinson & Shafai (2005), Pimenta et al. (2008b) and Pimenta et al. (2013b). In
addition, some properties of the robot swarm can be used to create a structure with smaller
dimension than the dimension of the global swarm configuration space. In Belta & Kumar
(2003) this strategy is also used, creating virtual structures called abstractions. This
work also make use of such structures, that will be detailed in Section 3.1.1. By creating
these structures, one can control several robots as a whole, which facilitates navigation
problems for multiple robots, but in contrast you have less control over the behavior of
each robot separately. In Santos & Chairmowicz (2011) and Santos & Chaimowicz (2011),
abstractions of this type are used in the context of robot swarms and in Chaimowicz &
Kumar (2004) unmanned aerial vehicles (UAVs) are used to gather the abstraction states
and then send commands to swarms of robots as a whole for split and regroup tasks.

2.1.2 Swarms with Heterogeneous Robots

The use of heterogeneous robots has recently attracted the attention of researchers in
robotics. There are some advantages to systems of this type, for example, one can design a
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(a) Simple mobile robots. (b) Robots with grippers.

(c) Aerial robots with cameras.
Figure 2.1: Project Swarmanoid.

system with some robots having only one type of actuator and sensor, while other robots
have different actuators and sensors. Such a system is highly scalable because you expand
the system by only adding the robots that are needed. It also has high fault tolerance
due to the redundancy of robots of the same type. An example of such a system is the
Swarmanoid (Dorigo et al., 2013) project. In this project there are three groups of robots.
Some have cameras that act as system sensors (Figure 2.1c), some robots have grippers as
actuators (Figure 2.1b) and there are also robots that have the function of moving the
robots with grippers robots, (Figure 2.1a).

There are other works that address various problems in the area of heterogeneous robot
swarms. In (Prorok et al., 2017), the authors propose a metric to evaluate the impact of
the heterogeneity of robots on a swarm when performing a task where each robot can only
perform part of it.

In Pimenta et al. (2008a) and Kantaros et al. (2015) control laws are proposed to
address the problem of space coverage with heterogeneous robots. Robots are different
in that their sensors have different detection capabilities. These works are interesting for
some applications, for instance, using both air and ground robots to coverage tasks.

In the use of heterogeneous robots an important skill for the system that can be useful



2.1. SWARMS OF ROBOTS 11

Figure 2.2: Segregation example. Left: initial configuration of robots. Top right: cluster
segregation. Bottom right: radial segregation.

in many applications is the ability to autonomously segregate. This is the ability to form
groups, each containing only robots of the same type. In order to provide this capability
to the system, individual control laws must be designed that make robots of the same type
form clusters, or, radial rings. Figure 2.2 shows an example of an initial configuration
of robots (left) and two segregated systems: system segregated in clusters (top right)
and system radially segregated (bottom right). Note that robots of the same type are
represented by the same color.

In Kumar et al. (2010) and Santos et al. (2014) heterogeneous robots are also used
and the problem of autonomously segregating swarms of robots in clusters is addressed, as
will be better described in Section 2.2.

Application with swarms of robots can be more interesting when the robots do not
need the knowledge of all system’s information, i.e. global information. Next, we present
some works in which the control is performed in a decentralized manner, that is, each
robot individually does not have information about the whole system.

2.1.3 With Decentralized Control

In this section, we will cover some work in the robot swarm literature where the control
is done in a decentralized manner. In this work we assume that decentralized control is
the one in which robots individually do not have information about the whole system and
there is no central unit controlling the whole system.

In Tanner et al. (2005) the problem of flocking is studied, where is desirable that all the
robots achieve the same speed, this is done by exchanging information between robots. The
problem of flocking is also studied in Li & Xi (2008) and Erfianto et al. (2016). In those
works, the authors are interested in studying the flocking behaviour while maintaining
robots close so that they are always able to communicate with each other, i.e. maintaining
the connectivity. In Erfianto et al. (2016) flocking is performed, maintaining connectivity
and also avoiding obstacles, as shown in the Figure 2.3. In this figure the group of robots
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Figure 2.3: Flocking with obstacle avoidance (Erfianto et al., 2016).

reaches a flocking formation, maintaining connectivity while dodging various obstacles.
Note that the figure shows which robots are connected to each other.

There are works that aim only to maintain or modify the connectivity graph between
robots. In De Gennaro & Jadbabaie (2006) an algorithm that increases the connectivity of
a robot swarm is proposed and Dimarogonas & Johansson (2008) proposes an algorithm
to maintain connectivity when inputs are limited. Both algorithms are decentralized, each
robot only have communication up to a fixed distance defined a priori. This simulates the
operating radius of communication equipment, which is usually limited.

In Bezzo et al. (2014), communication networks with a heterogeneous robot system are
presented, in which aerial and terrestrial robots are used as signal routers and these robots
move in an environment while keeping the communication network connected. Recently,
Maeda et al. (2017) have proposed a decentralized navigation method for a swarm of
heterogeneous robots with limited vision capabilities. A leader-following algorithm has
been proposed that allows the swarm to maintain its connectivity while navigating with
robots differing in their sensor range, vision capabilities and maximum velocities and
accelerations.

The works of Freeman et al. (2006), Niccolini et al. (2008), Antonelli et al. (2013)
and Morbidi et al. (2011) use estimators simultaneously with robot control. Freeman
et al. (2006) proposes a decentralized control strategy in which each robot estimates the
variables representing the whole system using a consensus strategy and using the idea
of an abstraction, as previously described, and controlling the abstraction rather than
directly controlling the robots themselves. Much of the work that addresses control in a
decentralized manner applies consensus algorithms. In the context of cooperative control,
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consensus can be defined as an agreement between group members for a common goal. The
variable defined as information state is used to model the collective view of the common
goal and can be used to represent some idea of coordination variable, such as location of
agent formation or position/time of rendezvous (Ordoñez et al., 2012).

In Niccolini et al. (2008) a very similar proposal is shown, but with the addition
of a scheme to avoid collisions between robots and obstacles. The proposal in Morbidi
et al. (2011) is similar to Freeman et al. (2006) and Niccolini et al. (2008) but instead of
moving to a desired position robots should now distribute themselves in order to perform
monitoring tasks. In Antonelli et al. (2013) the proposal is also similar, however, a state
observer is used to estimate the states of the robot group and the algorithm control its
centroid. In Antonelli et al. (2013), both time invariant topologies and time variants are
considered, i.e. the graph of connectivity between robots may or may not vary over time.

The next section describes some works that deals with the segregation problem in
robot swarms, both in a centralized manner and with some decentralization.

2.2 Segregation in Swarms of Robots

For robots with different characteristics to be used to perform their tasks, it may be
necessary to separate the swarm into groups containing only robots of the same type, so
that these robots can perform the task proposed for their group. One of the first works in
this topic was developed by Groß et al. (2009).

Groß et al. (2009) has developed an algorithm that is able to segregate robots based on
the Brazilian nut effect. When a container containing a large sphere and numerous small
spheres is shaken, the larger sphere rises even when it is denser than the other spheres.
Similarly, a mixture of different sized particles will segregate by size when agitated. This
effect is called Brazilian nut effect Rosato et al. (1987). Figure 2.4 shows a sequence of
frames illustrating this effect.

In the work of Groß et al. (2009), although robots have the same size, the behavior of
different sized particles is simulated. In Chen et al. (2012) this approach is successfully
implemented in e-puck robots. The proposal is based on three behaviors: random
movements that simulate container shaking, attraction to the center of gravity and
repulsion to other robots. Thus, each robot needs a global information, which is the center
of gravity of the system. In the e-pucks implementation, to simulate this gravitational
point of attraction, a light bulb is used as the radiation source. Figure 2.5 shows one
frame of the experiments in Chen et al. (2012), where one can see the radiation source
used. The need for this global information is a disadvantage, as in many applications it
is impracticable for each robot to obtain this information. Also, there is no proof of the
stability of the proposed controller, which motivates the development of controllers that
converge to segregation regardless of the number of robots and groups.
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Figure 2.4: Brazilian nut effect (Wikimedia, 2010)

Figure 2.5: Radial segregation using the Brazilian Nut Effect (Chen et al., 2012).

We now review relevant works found in literature that intent to solve the problem of
segregating swarms of robots. We divide the works into two categories: in Section 2.2.1 we
review works that intent on segregating groups into clusters, that is, robots of the same
group must be close while apart from robots of other groups and in Section 2.2.2 we review
the works found in literature that aim to solve the problem of radial segregation, that is,
robots of the same group must converge to the same distance in relation to a reference
point while this distance must be different between different groups.

2.2.1 Segregation in Clusters

This section reviews the works that attempts to solve the problem of autonomous segrega-
tion of heterogeneous robot swarms in clusters. The most relevant studies in solving this
problem are, Kumar et al. (2010), Santos et al. (2014), Edwards et al. (2016), Inácio et al.
(2019) and Mitrano et al. (2019). In addition to works previously developed in the context
of the master thesis of this author: Ferreira Filho & Pimenta (2015a), Ferreira Filho &
Pimenta (2015b) and the algorithm that will be showed in Section 4.2.

In Edwards et al. (2016) an algorithm is developed for robots modeled as single
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Figure 2.6: Convex Optimization Based Robot Segregation. From left to right: 5 groups
of robots reaching segregation (Edwards et al., 2016).

integrators, assuming access to global information. The algorithm is based on convex
optimization, calculating the convex hulls of each group of robots and then segregating
the groups until there is no intersection between the convex hulls. Formal convergence
proof is shown not considering collisions between robots although a collision avoidance
scheme is shown. Figure 2.6 shows a simulation present in Edwards et al. (2016) in which
it is possible to note the convex hulls of each group and also the segregated groups.

Recently, in Inácio et al. (2019), a decentralized algorithm is proposed considering
also single integrator robots. This approach uses a combination of the Particle Swarm
Optimization method (PSO) (Eberhart & Kennedy, 1995) with the ORCA (Van Den Berg
& Manocha, 2011) algorithm and it is interesting in the sense of not requiring global
information to reach segregation. According to Inácio et al. (2019), the convergence cannot
be proven but if one consider infinite time, the algorithm is probabilistically complete.

Also recently, a reactive minimalistic approach was proposed (Mitrano et al., 2019).
In this work, each robot is equipped only with a ternary sensor capable of detecting the
presence of a single nearby robot, and, if that robot is present, whether it belongs to the
same group as the sensing robot. Although in this work segregation may occur using
minimalistic information, there is no mathematical guarantee of such fact.

This work is best related to other works that address the segregation problem in robot
swarms assuming the double integrator robot model. Furthermore, we are interested in
works that present a convergence proof to segregation, such as: Kumar et al. (2010) and
Santos et al. (2014). Both are based on the gradient of potential functions.

In Kumar et al. (2010) an artificial potential function based on the differential adhesion
model of biological cells is used. This was the first work to achieve distributed segregation
to appear in the literature showing a convergence proof. Asymptotic convergence proof for
segregation and stability analysis for robot swarms with only two groups are shown. The
work only deals with two groups of robots, using potential function composed of three
parts: potential between robots of one group, potential between robots of the other group,
and potential between robots of different groups. Thus, there is a parameter that assumes
different values for each part of this potential function, and for the potential between
robots of different groups this parameter must be greater than for other cases, which may
have equal parameters. In the work of Kumar et al. (2010) a simulation is presented with



16 CHAPTER 2. RELATED WORK

Figure 2.7: Robot segregation using potential functions. From left to right: 5 groups of
robots reaching segregation (Santos et al., 2014).

two groups reaching segregation. In addition, data from just over 100 simulations that
also achieved segregation according to the proposed definition are shown. This work does
not consider collisions between robots.

The potential function used in Santos et al. (2014) is very similar to the potential
function of Kumar et al. (2010) but has the addition of one term that helps in the
segregative behavior for the system with more than two groups. In Santos et al. (2014),
three simulations with 150 robots in total divided into groups of 5, 10 and 15 robots are
shown. The mean and standard deviation of 100 other simulations, also with groups of
5, 10 and 15 robots are also shown. In all simulations the groups segregate successfully.
The proof of system stability with the application of the proposed controller is shown,
but no proof of convergence to segregation is presented, which means that there is a
possibility that the system converges to a stable situation, in which the groups are not
segregated. According to Santos et al. (2014) these situations can occur when groups are
very unbalanced, i.e. there are some groups with few robots while there are other groups
with many robots. Figure 2.7 shows snapshots of a simulation with 150 robots equally
divided into 5 groups in which it is possible to see the segregation of the groups taking
place. Note that in Edwards et al. (2016) (Figure 2.6) collisions are not being addressed
and in Santos et al. (2014) (Figure 2.7) collisions are avoided.

In both Kumar et al. (2010) and Santos et al. (2014) all robots need information from
all the other robots of the system at all times, this is due to the fact that in both potential
functions the information of all robots is always used even when the robots are already
segregated or too far apart, whether in the same group or not.

The table 2.1 shows a comparison between the algorithms for segregating robot swarms
into clusters. Note that there is no algorithm with a formal proof of convergence for
multiple groups of double integrator robots using only local information. This is one of
the main contributions of our approach (presented in Ferreira Filho & Pimenta (2020) and
in Section 4.2 of this document) in which robots must have the knowledge of a common
reference point or there must exist an underlying connected topology.
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2.2.2 Radial Segregation

A system is said to be radially segregated if all the robots of the same group are positioned
at the same distance from a reference point while robots from different groups are positioned
at different distances from it.

In Groß et al. (2009) and Chen et al. (2012) the main idea is to segregate robots in
clusters inspired in the Brazilian Nut Effect, however, they also show experiments where
radial segregation occurs, as it can be seen in Figure 2.5.

In Wilson et al. (2004), the intention is to segregate objects using robots and not to
directly segregate robots, nonetheless, it has contributions providing performance metrics
for radial structures. Three mechanisms for sorting objects radially using robots are
presented briefly, in which two mechanisms are based on the fact that under centripetal
forces particles segregate according to their size. In Groß et al. (2009) the same fact was
used.

Szwaykowska et al. (2014) investigate a swarm of robots in which robots have different
dynamics. The swarm is divided into two groups, one group having only robots that are
poorly maneuverable and the other group having only robots that can be accelerated
faster than the robots in the first group. It is observed that segregative patterns emerge
naturally with the proposed dynamics. This is the only work dealing with segregation
found in the literature in which swarm heterogeneity is due necessarily to the difference in
robot dynamics. Other works assume a broader concept in which the heterogeneity is not
explicitly defined. A simulation is shown in which radial segregation occurs, but no proof
of convergence is presented. Segregation is not observed when all robots have the same
dynamics.

In this work, we propose a controller for robots with double integrator dynamics to
radially segregate heterogeneous swarms. The methodology for this approach is shown in
Section 4.3 and the simulations and experiments in Section 5.2.2. The same approach has
originated a paper: Ferreira Filho & Pimenta (2019b). Robots do not have the knowledge
of the number of robots nor the number of groups in the system. Different from other
works we present a method with a proof of convergence. Thus, we can say that by using
our controller the system will always reach a segregated state. With our controller, robots
do not need information from all the other robots of the system to achieve segregation
although robots must have the knowledge of a common reference point or there must be
an underlying fixed communication topology.
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3
Abstraction Based Segregation

In this chapter, two algorithms are presented. Both algorithms are based on the same
main idea, to use abstractions to represent the groups and use a potential function to
separate the groups represented by the abstractions. The fundamental background for
both algorithms is presented in Section 3.1. Also in Section 3.1 we formally define the
problem as it will be considered in this chapter.

The first approach is an algorithm in which collisions are avoided and the use of local
information occur only in certain situations. A proof of convergence is shown and the
algorithm will be described in Section 3.2. The simulations and experiments related to
this algorithm will be described in Section 5.1.1.

In the second algorithm, we have more interest in the use of local information. Thus, the
states of the abstractions will be obtained by decentralized estimators. Collisions between
robots are not avoided and there is no proof of convergence, although the algorithm is
being developed in order to facilitate that a possible proof of convergence is obtained. This
algorithm is described in Section 3.3 and its simulations can be found in Section 5.1.2.

21
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3.1 Background

Consider ∑M

j=1 Nj holonomic mobile robots moving freely in a 2D plane with position of
each robot given by the vector

qkj =

xkj
ykj

 , k = 1, 2, ..., Nj. (3.1)

The index j indicates to which group a robot belongs, j = 1, 2, ...,M , Nj indicates the
number of robots in group j, and k = 1, 2, ..., Nj are the robots in group j.

Consider also robots modeled as double integrators:

q̇kj = vkj , v̇kj = ukj , k = 1, 2, ...Nj, (3.2)

in which ukj is the control input of the k-th robot of group j. Throughout this paper,
superscript indexes k and l are used as robot indexes and subscripts i and j are used as
indexes of groups (abstractions). This distinction is important mainly when several groups
are being addressed in the collision avoidance algorithm in Section 3.2.1.

Our goal is to devise control laws that allow this heterogeneous group of robots to
segregate into the M homogeneous groups, as will be formally stated in Section 3.1.2.

Remark 1. For the sake of simplicity in the presentation of the proposed methodology, in
this chapter, we consider mobile robots in a 2D plane. However, it is straight forward to
apply the approach in 3D by considering an additional z component in the position vectors,
as long as the underlying robot dynamics are those of a point mass robot. In Section 5.1.1
we present simulations in 3D environments to show that the method can be extended to
higher dimensions.

Remark 2. All the algorithms of this work are developed for robots modeled as double
integrators. However, it is possible to apply the same algorithms to other robot models. In
the Appendix A.1.2 we show how to apply the algorithms shown in this work to other robot
models.

3.1.1 Abstractions

Some approaches commonly used to control robot swarms consider the swarm, or part of
it, as a single virtual entity. Usually in this type of approach it is easier to control the
swarm, even though one might have less control over individual robots. In this work an
approach of this type is used and the entity representing the group is called abstraction.

In Belta & Kumar (2003), numerous robots are controlled by means of an abstraction,
mapping the configuration space into a space with lower dimension. We define, in this
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section, a circular abstraction as proposed in Belta & Kumar (2003) to represent each
group of robots.

Each abstraction has state variables associated with the mean of the positions of the
robots and the covariance matrix of the positions of the robots belonging to the same
group. The covariance matrix related variable quantifies the dispersion of a group.

The mean of the positions of each group is given by

µj = 1
Nj

Nj∑
k=1

qkj . (3.3)

For robots in the 2D plane, µj is given by:

µj =

µxj
µyj

 , (3.4)

in which µxj and µyj are the components x and y of µj, respectively.
Each abstraction is made symmetric, defined by a circle. Another variable associated

with each abstraction is given by

σj = 1
Nj

Nj∑
k=1

[(xkj − µxj )2 + (ykj − µyj )2], (3.5)

and reflects the dispersion of robots in relation to the mean of the group.
The configuration space of a system with Nj planar robots is given by Q ≡ R2Nj Choset

et al. (2005). Variables of each abstraction define the map:

φj : Q→ G ⊂ R3, φj =


µxj

µyj

σj

 , (3.6)

in which the dimension of the manifold G is not dependent of the quantity of robots in
the group.

The variables of the abstraction implicitly define a circle Cφj that contains all robots
of the group. The center of this circle is the mean of the positions of the robots and the
radius is given by

√
Njσj:

Cφj = B(µj,
√
Njσj), (3.7)

where B(a, b) defines a ball centered in a with radius b.
Note that ∥∥qkj − µj∥∥2 ≤

Nj∑
k=1

∥∥qkj − µj∥∥2 = Njσj, (3.8)

which implies ∥∥qkj − µj∥∥ ≤ √Njσj. (3.9)
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Equation (3.9) means that, by construction, all the robots associated with φj always
remain inside the abstraction Cφj .

Other shapes of abstractions are possible, such as ellipses and squares in the 2D plane,
as presented in Belta & Kumar (2004). In this work, a simple circular abstraction is used
because with this abstraction it is guaranteed that all robots will always stay inside it.
This fact will help in the convergence proof in Section 3.2. There exists other geometrical
forms that can have this property, we have chosen the circle because it can be defined
with only three variables and the circle can be defined to comprise all the robots with
tighter fits than other geometrical forms.

3.1.2 Problem Definition

Having defined the abstractions and robot models, we can formally present the problem of
segregating robots into clusters.

Problem definition: Consider ∑M

j=1 Nj robots of M types with dynamic model given
by (3.2), devise individual control laws that enforce the robots to move in a way so that
each abstraction associated with the robots converge to a state in which:

⋂
j={1,...,M}

Cφj = ∅. (3.10)

When segregated, all robots of the same type will stay together while separated from
robots of other types.

Figure 3.1 shows a segregated system according to the definition above, in this Figure
robots of the same group have the same color and are inside the same abstraction. Lines
connect the centers of the abstractions. Note that, by definition, robots of a group always
remain inside the abstraction of this group.

3.1.3 Potential Function

This section reviews a potential function proposed by Olfati-Saber (2006). The control
law to be derived in this work is based on the artificial forces derived from this potential
function. The function has an interesting property of having a finite cut-off. It means that
there will not be any virtual force between agents if they are very far from each other.
This helps giving a local property to the segregation algorithm under some conditions, i.e.
robots may not use global information all the time. The potential function that was used
in both Kumar et al. (2010) and Santos et al. (2014) to achieve segregation does not have
this property.

In the original context, the potential function proposed in Olfati-Saber (2006) was
applied directly in the individual robot controllers to achieve a flocking behavior. In this
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Figure 3.1: Circular robots divided in 3 groups of 3 robots.

work this function will be applied to control the center of each abstraction. Thus, we
consider the multi-agent system in which the abstractions are the agents.

Before presenting the potential function, the definition of a non-negative mapping is
required so that the potential function is differentiable everywhere. This mapping is called
σ-norm (Olfati-Saber, 2006):

‖z‖
σ

= 1
ε

[√
1 + ε ‖z‖2 − 1

]
, (3.11)

in which ε is a parameter that acts as a gain and is fixed throughout this work and z is
the variable being mapped. Considering the vector of abstraction mean positions, µ, we
can now present the artificial potential function:

V (µ) = 1
2
∑
j

∑
i6=j

ψα(‖µi − µj‖σ), (3.12)

in which
ψα(r) =

ˆ r

dα

γα(s)ds, s, y ∈ R; (3.13)

and γα : R+ → R+ is given by

γα(s) = ρh(s/rα) c(s− dα)√
1 + (s− dα)2

, (3.14)

in which c is a positive constant, dα is a positive constant defining the global minimum of
ψα with dα = ‖d‖

σ
.
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Figure 3.2: Parameters: c = 0.02, h = 0.4, dα = 8, rα = 1.5dα. (a) Artificial Potential
between two agents versus the distance between them. (b) Artificial force between two
agents based on the gradient versus the distance between them.

Function ρh(z) is called a bump function and varies smoothly between 0 and 1 (Olfati-
Saber, 2006):

ρh(s/rα) =


1, s/rα ∈ [0, h)

1
2

[
1 + cos(π( (s/rα)−h

1−h ))
]

s/rα ∈ [h, 1]
0, otherwise

(3.15)

where h ∈ (0, 1).
The parameter rα defines the finite cut-off rα = ‖r‖

σ
. It means that if two agents are

in a distance greater than rα from each other, there will not be any repulsive or attractive
artificial force between them.

Using the artificial potential function, the following forces can be obtained:

Fi =
∑
j∈Bi

γα(‖µi − µj‖σ)nij︸ ︷︷ ︸
−∇µiV (µ)

+
∑
j∈Bi

ρh(‖µi − µj‖σ /rα)(µ̇j − µ̇i)︸ ︷︷ ︸
velocity consensus

(3.16)

in which,
nij = (µj − µi)/

√
(1 + ε ‖µi − µj‖2). (3.17)

In (3.16), the term indicated as velocity consensus is used so that all agents have the same
velocity when the artificial force is close to zero. This can be seen as a damping term. Bi

is the set of neighboring abstractions of abstraction i. Those neighbors are those groups
in which the center of their abstractions are in a distance smaller than rα from the center
of abstraction i.

Figure 3.2 shows an example of (3.13) and (3.14). Parameter c acts as a gain, while
parameter h modifies the smoothness of the force. For any two agents, the force of
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Figure 3.3: A α-lattice example.

repulsion/attraction will fade when they are exactly at the desired distance dα and when
the distance between them is greater than rα.

An important Lemma regarding the function in (3.12) is given below:

Lemma 1. If d < r <
√

3d, all local minimum of V (µ) implies in the formation of an
α-lattice (Olfati-Saber, 2006).

These structures (α-lattices) are lattice shaped in which each vertex is at the same
distance dα of each other vertex belonging to its neighborhood. An example of an α-lattice
can be seen in Figure 3.1, in which the α-lattice is a triangle. Another example is show in
Figure 3.3. Those formations must satisfy the set of algebraic restrictions given by

‖µi − µj‖ = d, ∀j ∈ Bi. (3.18)

The formation of α-lattices, proven in Olfati-Saber (2006) is crucial in the convergence
proof to segregation shown in Section 3.2.

3.2 Methodology - Segregation without Estimators

In this section, the algorithm for the problem of segregating groups of robots into clusters
with convergence proof is shown. We also show a scheme to deal with collisions between
robots without affecting segregation and another scheme to deal with implementation
problems that arise after collisions maneuvers are executed.

The proposed control algorithm is based on the use of abstractions to represent each
group of robots and an artificial potential function to command the motion of such
abstractions.

In order to design our individual controllers it is important to relate the motion of the
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abstraction with the motion of the robots. Thus, differentiating (3.6)

φ̇j = Dφjq̇j, (3.19)

in which q̇j = [ẋ1
j , ẏ

1
j , ..., ẋ

Nj
j , ẏ

Nj
j ]T . By using (3.3), (3.5) and (3.6) we can obtain Dφj:

Dφj = 1
Nj



1 0 2(x1 − µxj )
0 1 2(y1 − µyj )
... ... ...
1 0 2(xNj − µxj )
0 1 2(yNj − µyj )



T

. (3.20)

Since we have robots with double integrator dynamics, we need a relation between the
abstraction motion and the robot acceleration. By differentiating (3.5) twice we have

σ̈j = 2
Nj



x1
j − µxj
y1
j − µ

y
j

x2
j − µxj
y2
j − µ

y
j

.

.

.

x
Nj
j − µxj
y
Nj
j − µyj



T

q̈j + 2σ′j, (3.21)

where,

σ′j = 1
Nj

Nj∑
k=1

(ẋkj − µ̇xj )2 + (ẏkj − µ̇yj )2, (3.22)

in which q̈j = [ẍ1
j , ÿ

1
j , ..., ẍ

Nj
j , ÿ

Nj
j ]T . We can write:

φ̈j = Dφjq̈j +


0
0

2σ′j

 . (3.23)

In order to cancel the dynamics that have emerged in (3.23) and consequently be able
to directly control the states of the abstraction, we propose a controller for all the robots
of group j:
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uj = DφTj (DφjDφTj )−1

−


0
0

2σ′j

+ ũj

︸ ︷︷ ︸
Sj

+N (Dφj), (3.24)

in which φj is the abstraction map with robot positions given by qj. Based on (3.2) we
have q̈j = uj, in which uj = [(u1

j )T , (u2
j )T , ..., (u

Nj
j )T ]T . Note that each robot can compute

their part of the control law (3.24) without having to compute the control actions for all
robots in its group. The virtual input ũj must be designed to control the abstraction state.
The term N (Dφj) is a vector defined in the null space of Dφj and will be responsible for a
collision avoidance scheme and will be defined later, in Section 3.2.1. This term will be
null when robots have no risk of colliding to each other.

We have that,
det(DφjDφTj ) = 2σj

(Nj)3
, (3.25)

and as long as σj 6= 0, this matrix inverse exists. By analysing the definition of σj, (equation
3.5) we can conclude that the case in which σj = 0 is only possible if all the robots of a
group are located in the same position at the same time.

From (3.23), applying the individual control laws defined by the components of uj in
(3.24) in every robot, the abstraction state will evolve according to

φ̈j = ũj, (3.26)

in which ũj is a virtual input to abstraction j and is now defined by:

ũj =

Uµ
j

Uσ
j

 . (3.27)

The term Uµ
j is an artificial force that guides the mean of the positions of the group and

Uσ
j determines the evolution of the size of the abstraction. The design of Uµ

j and Uσ
j will

determine if the approach will be successful. The artificial force to segregate the groups,
as defined in Section 3.1.3, is given by

Uµ
j = Fj, (3.28)

where Fj is defined according to (3.16) so that the abstraction centers will form α-lattices.
To control the size of each abstraction, we propose a controller Uσ

j so that each
abstraction converges to a desired size. The desired size σdesj is such that, when all
abstractions reach this size and the α-lattices are formed, the system will be considered to
be segregated according to our definition. We know that each abstraction radius is given
by Rj =

√
Njσj. Therefore, we should design σdesj so that the radius Rj of each abstraction
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will be smaller than half of the distance d, where d is the size of the edges of the α-lattice,
as follows

σdesj <
d2

4Nj

. (3.29)

We propose now the controller Uσ
j :

Uσ
j = σ̈desj + k1(σ̇desj − σ̇j) + k2(σdesj − σj), (3.30)

in which k1 and k2 are properly designed positive gains and

σ̇j = 2
Nj

Nj∑
k=1

[(xkj − µxj )ẋkj + (ykj − µyj )ẏkj ]. (3.31)

We can make σdesj constant which implies that σ̈desj and σ̇desj are equal to zero.
Finally, in the absence of imminent collisions, each robot will be guided by the individual

control laws from (3.24), with N (Dφj) = 0 and ũj given by (3.27), (3.28), (3.29) and (3.30).
After some simple manipulation, the elements of Sj related to robot k in (3.24) can be
written as:

Skj = Uµ
j +

(qkj − µj)
σj

[−2σ′j − k1σ̇j + k2(σdesj − σj)]. (3.32)

The gains k1 and k2 will be fixed for all abstractions. Without avoiding collisions, we then
have the individual control law:

ukj = Skj , (3.33)

meaning this is the pure segregation controller for robot k, disregarding the collision
avoidance scheme, which will be zero in situations where no imminent collisions are
detected.

If we consider the collision avoidance scheme, the complete controller is defined as

ukj = Skj +Nk(Dφj), (3.34)

in which Nk(Dφj) is the k-th and (k+1)-th elements of the full vector N (Dφj), i.e. the
elements related to robot k.

The individual control laws (equation (3.33)), when the collision avoidance scheme is
not being used, depends on the state of the robot itself, on the state of the abstraction of
the robot and on the states of neighboring abstractions. This control law does not depend
on the states of robots and abstractions that are far from the robot being controlled, i.e.
outside neighborhood Bi defined in Section 3.1.3 thanks to the finite cut-off property of
the artificial potential field.

If we consider the collision avoidance scheme, (equation 3.34), robots will also need
information about all robots that belongs to the groups that are involved in the collision
being avoided as we will show in the next section.
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3.2.1 Collision Avoidance Strategy

The proposed control laws until now were designed to control point robots, that is, they
do not consider robot sizes. To make this proposal feasible to be applied in actual robots,
the size of each robot must be considered and a collision avoidance scheme must be used.

In order to guarantee that the collision avoidance scheme will not interfere in the
convergence to segregation, which is our primary goal, we will consider a controller in the
null space of Dφj. This term is related with the vector N (Dφj) introduced in (3.24) and
(3.34).

In Michael et al. (2007) a similar approach is used, also in the null space of Dφj,
however using aggregations of three arbitrary robots to avoid collisions. When a robot is
in imminent collision, two other robots are chosen to “correct” the state of the abstraction
while the robot in imminent collision changes its route to avoid collision. Those grouping
are based on the distances among the three robots taken two at a time. Note that in this
case, to exist a null space, there must be at least three robots in the system.

In this work, we propose a different scheme, where those aggregations are not needed.
We consider the null space of the whole group of the robots in imminent collision. We use
the projection:

N (Dφj) = (I −DφTj (DφjDφTj )−1Dφj)ûj = N ûj, (3.35)

where I is the identity matrix.
This new controller term is only activated if an imminent collision is detected. This

term will be equal to zero if none of the robots are in imminent collision in the system.
We define two conditions to be satisfied so that a robot is considered in imminent collision.
First, we check if robots are close enough, i.e.

∥∥qki − qlj∥∥ < 2Rb + δ. (3.36)

In this work, we consider circular robots with radius Rb and a safety factor δ.
Moreover, we check if, with current velocities, robots are in trajectories that would

likely result in collision, i.e.
(q̇ki − q̇lj)T (qki − qlj) < 0. (3.37)

Indexes i and j indicate to which group those robots belong and indexes k and l indicate
which robots are in imminent collision.

Therefore, the individual control laws are determined by:

ukj = Skj + 1A(I −DφTj (DφjDφTj )−1Dφj)ûj. (3.38)

in which 1A is a indicator function that is equal to 1 when there is a robot in imminent
collision, i.e. conditions 3.36 and 3.36 are satisfied. This indicator function is equal to 0
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Figure 3.4: Schematic illustrating the strategy to avoid collisions.

when robots there are no robots in imminent collision.
Vector ûj is chosen to guarantee absence of collisions as shown next.
As robots are actuated in acceleration, one should search for new accelerations that

generate collision free trajectories. This is done based on the equations of motion for
one-dimensional movements with constant acceleration (Torricelli’s equation of motion)

v2
f = v2

0 + 2a∆s, (3.39)

where vf is the final velocity of the robot in consideration, v0 is the initial velocity, a is the
acceleration and ∆s is the difference in the displacement in a given time interval.

To obtain the acceleration a so that robots in imminent collision do not collide, we
consider a conservative approach using vf = 0. This means that, in the worst case, both
robots should stop moving right before collision. We then define ∆s as half the distance
between two robots being considered, minus the radius of the robots

∆s = 1
2
∥∥qki − qlj∥∥−Rb, (3.40)

assuming both robots with radius Rb. Considering the acceleration components a of robot
k of group i in the direction of robot l of group j:

a = (uki )T
(qlj − qki )∥∥qlj − qki ∥∥ , (3.41)

and considering the component of the velocity v0 of robot i in the direction of robot j:

v0 = (q̇ki )T
(qlj − qki )∥∥qlj − qki ∥∥ . (3.42)

Replacing vf = 0 in Torricelli’s equation, we define the constraint

a ≤ 0− v2
0

2∆s . (3.43)
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Figure 3.4 shows an example with two robots in imminent collision (robots k and l)
that may or may not be of the same group. In this Figure, we highlight ∆s (equation
(3.40)), the component of the acceleration a (equation (3.41)) and the component of the
velocity v0 (equation (3.42)) related to robot k.

Replacing ∆s, a and v0 in (3.43), we have a constraint for robot k in relation to robot l:

(uki )T
(qki − qlj)∥∥qki − qlj∥∥ ≥

[
(q̇ki )

T
(ql
j
−qk
i

)∥∥ql
j
−qk
i

∥∥
]2

∥∥qki − qlj∥∥− 2Rb

, (3.44)

similarly, we have for robot l in relation to robot k:

(ulj)T
(qlj − qki )∥∥qlj − qki ∥∥ ≥

[
(q̇lj)

T
(qk
i
−ql
j

)∥∥qk
i
−ql
j

∥∥
]2

∥∥qlj − qki ∥∥− 2Rb

. (3.45)

Therefore we have two constraints that, if respected all the time, robots will not collide.
In spite of the use of indexes i and j to treat groups, if two robots of the same group
are in imminent collision, we make i = j and those same constraints will be used to treat
collisions between these robots.

To make the strategy energetically efficient, ûj is minimized for every group involved:

min
∑
s∈Ωp

‖ûs‖2
,

s. t. (3.44) and (3.45),
(3.46)

where the set Ωp is the set of groups in which there are robots in imminent collision, and
index p indicates the corresponding connected component in the collision graph (see Figure
3.5). In this graph, each abstraction is a node and there are edges between nodes that
have imminent collisions between robots of their groups. Furthermore, ûs is the vector
of accelerations chosen to avoid collisions for group s, and s is an element of the set Ωp.
Figure 3.5 shows an example of a situation where the collision graph has two connected
components (p ∈ {1, 2}). In this scenario, there are two optimization problems to be solved
independently, one with two groups involved and another one with three groups involved.
Please refer to the Appendix A.1.1 to review the basic concepts in graph theory.

In each optimization problem, we consider in the objective function all groups in which
there are robots involved in imminent collisions. With this information, the problem can
be solved in a distributed manner as each robot can execute a minimization problem
internally.

Constraints of the minimization problem (3.46) are added for each pair of robots that
comply with conditions of (3.36) and (3.37). If two robots of groups i and j are in imminent
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Figure 3.5: Graph of Robots in imminent collision.

collision, for instance, the objective function in (3.46) becomes

min ‖ûi‖2 + ‖ûj‖2
, (3.47)

with constraints given by (3.44) and (3.45).

3.2.2 Implementation Issues

After the minimization problem (3.46) is solved, we have a vector ûj for each group. This
vector changes trajectories of a robot in imminent collision and potentially of all the
other robots of its group. We have seen in simulations that this can generate trajectories
with undesired high speeds. This effect usually occurs only after an imminent collision
is avoided. This effect is perceived visually as robots “orbiting” the center of its own
abstraction to maintain the abstraction state.

In this work we propose another controller with the objective of avoiding the robots to
move with velocities much higher than the velocity of its abstraction mean.

This new controller is called velocity dissipation controller, velocity being the difference
between the velocities of the abstraction mean and the velocities of the robots that belong
to this abstraction. This controller is associated with the collision avoidance controller
and is non-zero only if the collision avoidance controller is zero. That is, if we have an
imminent collision, only the collision avoidance algorithm is turned on and if we do not
have imminent collisions, only the velocity dissipation controller is turned on. It should be
clear that both controllers are defined in the null space of Dφj so that our primary goal,
segregation, is not impacted.

We define now a future velocity vector

f q̇j = [f ẋ1
j

f ẏ
1
j · · · f ẋ

Nj
j

f ẏ
Nj
j ]T . (3.48)
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This future velocity vector is obtained after integrating each robot trajectory for one
integration step, i.e. the velocity that each robot will acquire after applying a given control
vector ûj as depicted in Algorithm 3.1.

Algorithm 3.1 Calculate future robot velocity
Require: Control vector ûj
Ensure: Future velocity vector f q̇j

1: Calculate N (Dφj) (Equation (3.35))
2: Calculate ukj (Equation (3.34))
3: Integrate one step (Using robot model, equation (3.2))
4: Obtain f q̇j, which is vkj one step in the future

With f q̇j and mean velocities (µ̇j = [µ̇xj µ̇yj ]T ) we can now define a relative velocity
vector for group j:

relq̇j =f q̇j − 1⊗ µ̇j, (3.49)

where 1 is a column vector given by 1 = [1, 1, 1..., 1]T and ⊗ is the Kronecker product
operation. So that, in relq̇j we have the velocities of the robots in relation to the center of
its group’s mean velocity.

One must search for a vector û∗
j , that, in the next step, will generate velocities f q̇j that

minimizes relq̇j.
Minimizing those relative velocities in the null space of Dφj will make robots reduce

those potential high velocities dissipating the velocity of the robots without affecting group
formation. This unconstrained minimization problem is now defined

û∗
j = arg min

ûj

∥∥relq̇j∥∥2
. (3.50)

This minimization problem will generate a vector û∗
j that will be added to the control

action of the original segregation controller whenever there is no imminent collisions. One
different vector û∗

j will be generated for each group of robots.
Note that in many cases, when robots are already moving cohesively, the minimization

problem will generate a trivial all zero vector, because robot velocities and its abstraction
mean velocity are the same. The velocity dissipation controller has shown to be helpful in
dissipating high velocities generated after collisions are avoided. When conditions (3.36)
and (3.37) are satisfied, the collision avoidance controller will be non-zero. Thus turning
off the velocity dissipation controller.

Figure 3.6 shows a comparison between trajectories, so we can qualitatively analyze
the velocity dissipation controller. In this Figure, we have six robots divided into two
balanced groups (red and green groups). In both Figures 3.6(a) and 3.6(b) the same initial
conditions were used and the simulation was stopped at the same time. In 3.6(a) the
velocity dissipation controller is used and it makes the trajectories of red robots more
cohesive than the trajectories in 3.6(b) where the velocity dissipation is not used. In 3.6(b),
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(a) (b)

Figure 3.6: Trajectories comparison with and without the velocity dissipation controller.
(a) Velocity dissipation controller enabled. (b) Velocity dissipation controller disabled.

when a red robot has to avoid a collision, it accelerates to a high velocity and starts to
“orbit” around the abstraction center together with all the other robots of its own group
to maintain the group state. In both cases segregation was successfully achieved without
collisions but in the case of Figure 3.6(b) an undesirable “orbiting” behavior occurred, this
can be better visualized in the video presented in https://youtu.be/UvjgwlV_PCE.

3.2.3 Control Analysis

In this section, we formally analyze the proposed controller to show its capability in solving
the problem of segregation in robot swarms.

Theorem 1. The application of individual control laws given by (3.34) for a group of∑M

j=1 Nj robots with dynamics given by (3.2) divided inM groups will enforce the convergence
of the multi-robot system to a state where all robots of a same group are grouped together
while segregated from robots of other groups, i.e, the problem defined in Section 3.1.2 will
be solved if (i) solving (3.46) to avoid collisions is always feasible; (ii) the system does not
start in a local maximum or saddle point of V (µ); (iii) the robots start at different positions
in the environment; and (iv) k1 and k2 in (3.30) are such that the related characteristic
equation has roots with negative real parts.

Proof. The approach was elaborated to guarantee the solution of the problem; this means
that the proof is straight forward. The analysis is conducted in two parts.

First, we have to prove that all robots in an abstraction will stay inside it and the
abstraction state will converge to the desired size. The second part is to show that the
abstractions will end up separated, without intersections.

Due to the assumptions that the robots do not start at the same position and the
collision scheme in (3.46) is always feasible we can assure that the robots will never be at

https://youtu.be/UvjgwlV_PCE
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the same position at the same time. Thus, the determinant of DφjDφTj is different from
zero and the inverse in (3.24) always exists, then the motion of the abstraction will be
given by (3.26). From (3.30) it should be clear that if k1, k2 are properly designed the
dynamics given by σ̈j = Uσ

j will be such that σj converges to σdesj exponentially (Slotine
& Li, 1991). Since the radius is defined according to Rj =

√
Njσj, we know from Section

3.1.1 that the robots in φj will remain inside the abstraction during all the time.
For the second part of the proof, we consider the proof of Theorem 1 in Olfati-Saber

(2006). In that theorem, LaSalle’s invariance principle is used to show that a set of agents
with double integrator dynamics subject to the artificial potential force in (3.16) (see
Algorithm 1 in Olfati-Saber (2006)) asymptotically converges to a configuration which is
an equilibrium of function V . Since we assume that the system does not start at a local
maximum or at a saddle point of V , and these are unstable equilibria we can guarantee
that the system asymptotically converges to a local minimum of V . By using Lemma 1 (see
Section 3.1.3) we can conclude that the system asymptotically converges to an α−lattice
formation.

As the abstractions converge to the desired size, with all the robots of the abstraction
inside, together with the fact that the other parameters (see equation (3.29)) were specified
to guarantee absence of intersections among abstractions when they converge to the
α−lattice, the problem of segregation as defined in the Problem Definition will be solved
as t→∞.

In this theorem we made some assumptions on the initial conditions. We consider
those assumptions to be plausible in real scenarios. In real situations, the system hardly
begins and stays at a critical point of V (µ) as these are unstable equilibrium points, except
for the minima which are the solution of the problem. An example of a critical point
would be more than one abstraction center starting at the same point, it is reasonable to
assume that this will hardly happen in practice and even if it does, this is an unstable
condition. Most approaches based on artificial potential fields described in the literature
rely on the same assumption. Furthermore, a scheme to avoid collisions between robots
was developed, formulated through a minimization problem. If this problem always has
viable solutions, robots will never collide. However, it is known that there are situations
in which this problem has no viable solution. One can think of an example in which a
robot from one group is surrounded by several robots from another group. In this case,
the surrounded robot would not be able to escape from collisions without “disturbing” the
abstraction state of the robots that surround it. Nevertheless, it is reasonable to assume
that this type of situation is rare in practice.
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Figure 3.7: Example of a robot’s communication radius (Rcom).

3.3 Methodology - Segregation with Estimators

Figure 3.7 shows 2 groups of 3 robots in each, highlighting the communication radius
(Rcom) of a robot (robot k). Note that robot k has communication with only one robot in
its group and one robot in a neighboring group. This Figure also shows the communication
graphs of both the red robot group and the green robot group in dotted lines. Both graphs
are connected and the green robot group graph is also complete, meaning that all robots
of the green group can exchange information with each other. Also shown in the Figure
are the average of the positions of the robots for both groups, marked as diamonds.

In this section we propose a new controller where collisions between robots will not be
considered, thus, in order to be able to use it in practice a local controller to avoid collisions
must be implemented. The collision avoidance controller that does not change the state
of abstractions proposed in Section 3.2.1 cannot be used directly, as it uses information
from all robots in the groups involved in collisions and, in this controller, the focus is to
control robots with information provided only by the corresponding neighborhood. An
adaptation of the proposed controller to avoid collisions in Section 3.2.1 to work locally is
a suggestion of future work.

The controller in this section deals with the problem defined in Section 3.1.2, but no
proof of convergence or formal stability of the proposed controller will be presented, just
some considerations in the direction of such proof. The formal proof is also a suggestion
of future work.

The controller presented in this section is built upon the controller presented in Section
3.2. More specifically, in this section the same controller of the equation (3.32) is used and
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reproduced here:

ukj = µUj + (qk − µj)
σj

[−2σ′j − k1σ̇j + k2(σdesj − σj)].

However, all states of the abstractions, its derivatives and σ′ will be estimated. Each robot
now estimates abstraction states independently. It cannot be said that robots in the same
group estimate exactly the same value for a state. Thus, we use superscript k index to
represent the estimate of the robot k. For the k-th robot of the j-th group we have the
individual control given by

ukj = µ̂Uk
j +

(qk − µ̂kj )
σ̂kj

[−2σ̂′kj − k1
˙̂σkj + k2(σdesj − σ̂kj )], (3.51)

in which µ̂kj is the estimate of the average of the positions of all robots of group j, from
the k-th robot standpoint. Similarly, one has that σ̂kj , ˙̂σkj and σ̂′j are estimated values of
σj, σ̇j and σ′j, respectively, computed by robot k.

Note that in (3.32) all robots in the same group consider exactly the same value as the
states of abstraction (µj, σ, σ̇j and σ′j) and in (3.51) each robot individually calculates
each of these states. This is due to the fact that, previously, variables required for the
calculation of individual control were calculated centrally and supplied to the robots, and
now each robot makes this calculation in a decentralized manner.

Thus, the term µUj is changed to µ̂Uk
j in the equation (3.51). This means that the

potential forces for separation of group averages are now calculated from the estimated
values of the average of groups positions and velocities from the point of view of each
robot:

µ̂Uk
j =

∑
i∈Bj

γα(
∥∥µ̂ki − µ̂kj ∥∥σ)n̂kji +

∑
i∈Bj

ρh(
∥∥µ̂ki − µ̂kj

∥∥
σ
/rα)( ˙̂µ

k

i − ˙̂µ
k

j ), (3.52)

in which
n̂kji = (µ̂ki − µ̂kj )/

√
(1 +

∥∥µ̂ki − µ̂kj ∥∥2). (3.53)

This controller that guides the movement of the centers of abstractions, µ̂Uk
j , depends on

the positions and velocities of the centers of all neighboring abstractions. This information
is not available from the point of view of a robot. Thus, robots obtain the information
of these states of other groups from estimates of the nearest robots belonging to these
other groups. That is, robots from other groups transmit the states of their abstractions
to nearby robots.

No connectivity to other groups is assumed. If all robots in one group do not “see”
any robots in another group, this suggests that these groups are already segregated. If a
robot “sees” a robot of another group, this robot will move in such a way as to “repel” this
other group. Thereby, the other robots in its group will also move in order to maintain the
abstraction. This may cause another robot to “see” other groups, and also “repel” these
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other groups.

3.3.1 Consensus as Estimator

In the area of swarm robotics with decentralized control, consensus strategies are widely
used for swarm navigation, whether in flocking, rendezvous or other tasks. In the controller
that will be proposed in this section, a consensus is not used to move robots directly 1.

In this section, consensus protocols are used for robots to exchange information with
their neighbors so that certain variables are estimated, those variables are the ones that
each robot would not have access on its own. This information exchange is done until all
robots reach a certain common value for the estimated variable. A consensus protocol
is a process used for all robots to agree on a common value without a centralized agent
coordinating this information exchange.

Thus, using only local information, robots will have access to an estimate of these
variables and may use these estimates to define a decentralized controller to move each
robot to solve the segregation problem in robot swarms as defined in Section 3.1.2.

Note that in this document, when we use estimators, we are dealing with consensus
protocols used as estimators. We do not use Kalman filters or other types of classic
estimators.

In this section, only consensus protocols with no time delays and continuous time
will be considered, and the related graphs are always undirected. In (Zhu et al., 2017) a
complete review of the latest advances in consensus theory can be found. Variables used in
consensus protocols will be indicated by bars over the variables, e.g. x̄. All the variables
that have a bar are only used to exchange information and are not states of the robots.

Consider the dynamics

˙̄xk(t) = ūk(t) k = 1, 2, ..., N̄ , (3.54)

in which k = 1, 2...N̄ is the number of agents involved in the consensus protocol and
x̄k, ūk ∈ R.

Considering the dynamics (3.54) we define the following linear consensus protocol:

ūk =
∑
lεN̄

ākl(z̄l − z̄k), (3.55)

in which ākl are the elements of the Adjacency Matrix defined in Section A.1.1, specifying
the neighborhood of agent k, and z̄l and z̄k are scalar decision variables for robots l and k,
respectively. Those variables will be different depending on the estimative that is being
computed, as will be clear along the text.

1Except in part for the potential function of the Section 3.1.3 where there is a consensus term used to
match the velocity of the groups.
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The protocol (3.54) is called the average consensus, because this protocol always implies
in the convergence to the average of the initial conditions of the agents (3.54) if the robot
connection graph is an undirected connected graph (Olfati-Saber & Murray, 2003).

Note that this protocol is a first order one while the dynamics of the robots are modeled
with a second order model. This is possible because the consensus will be used as an
estimator and not to move the robots.

Convergence time to average is directly related to the algebraic connectivity, and also
depends on initial conditions x̄(0). Recent advances in consensus theory have made possible
to ensure convergence to the mean in finite-time (Wang & Xiao, 2010), and in fixed-time
(Parsegov et al., 2013).

Finite time convergence ensures that there is a constant T where convergence to the
mean will be achieved for all agents at a time less than T (Cao et al., 2013). The transient
period in the finite time consensus depends on the initial conditions. If the consensus
is reached in finite time and the transient period does not depend on the system initial
conditions, then this protocol is called the fixed time consensus (Zhu et al., 2017).

In this section, a fixed time consensus will be used as shown in Zhang & Jia (2015)
and reproduced below:

ūk = ᾱ
∑
lεN̄

ālk(z̄l − z̄k)m̄/r̄ + β̄
∑
lεN̄

ālk(z̄l − z̄k)p̄/q̄, (3.56)

in which ᾱ > 0, β̄ > 0 and m̄, r̄, p̄, q̄ are odd positive integers such that m̄ > r̄ and p̄ < q̄.
With this protocol there is a time Tmax which can be calculated and does not depend
on the initial system conditions, for all agents to agree on the mean value of the initial
conditions, i.e. the consensus of the mean is always obtained2.

Considering that in this work the communication graphs between robots are such that
the elements of the adjacency matrix are always 1 if there is a connection and 0 if there is
not, we can simplify the calculation of Tmax found in Zhang & Jia (2015) to

Tmax = πq(N (q−p)/2q
j )

2
(
λ2(q − p)

√
(ᾱβ̄)

) , (3.57)

in which Nj is the number of robots in group j and q̄, p̄, m̄, n̄, ᾱ e β̄ are protocol parameters
to be regulated a priori.

To estimate the states of the abstraction in a decentralized way, an estimator is
proposed using a consensus protocol for each state to be estimated. In this work, the
consensus protocol is always used with all robots in the same group. Thereby, we have
N̄ = Nj for the group j, i.e. the number of robots used in the protocol will always match
the number of robots in the group being considered.

2The proof can be found at (Zhang & Jia, 2015).
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Figure 3.8: Flowchart on how to move robots using estimated states to compute the
controllers.

From a robot’s point of view, first, the estimated states of its abstraction are obtained
using only local information, using consensus protocols. Then, the individual control
action is calculated using the estimated states (equation (3.51)). Finally, the robots move
with the computed control action. The Figure 3.8 exemplifies this whole process.

The fixed time consensus protocol will be used as shown in the equation (3.56). This
protocol will be computed internally for each robot for a fixed time.

Every time a robot calculates its individual control action (equation (3.51)) it must
have previously executed a consensus for each of the states required in this control law,
i.e. the consensus is executed on an internal loop and it is only virtual while segregation
control is executed in an external loop.

Therefore, for the individual control to be fully defined, at each moment one must
estimate, from the point of view of a robot of the j-th group, seven variables:

1. µ̂xj - Component x of the average of the positions of the robots of group j;

2. µ̂yj - Component y of the average of the positions of the robots of group j;

3. ˙̂µxj - Component x of the average of the velocities of the robots of group j;

4. ˙̂µyj - Component y of the average of the velocities of the robots of group j;

5. σ̂j - Third variable of the abstraction, associated with the size of the abstraction;

6. ˙̂σj - Variable required for the computation of the individual control (given by equation
(3.31));
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7. σ̂′j - Variable required for the computation of the individual control (given by equation
(3.22)).

This means that for each calculation of the individual control law (3.51) one has to
execute seven consensus protocols internally to estimate these values. In addition, robots
must receive from the closest robots from neighboring groups the states of these groups.

Note that the communication graph of robots may be time varying, but the graph
must remain connected at all times so that it is guaranteed that the consensus converges
to the average (Olfati-Saber & Murray, 2004). Also note that the communication graph is
not related to the collision graph used in Section 3.2.2.

In this section, it was assumed that all groups have connected communication graphs,
this means that each robot has communication with at least one other robot of its group.
The communication graph being connected is equivalent to saying that the Laplacian
matrix L always has a positive second smallest eigenvalue (see Section A.1.1). This
assumption is strong in the sense that there is nothing guaranteeing that robots will not
lose this connection. An interesting addition to this work may be to try to ensure that
graphs always remain connected. Strategies for maintaining the connectivity of a group
of robots exists, such as the works of Dimarogonas & Johansson (2008) and Yang et al.
(2010), but are beyond the scope of this work.

To estimate the averages of positions and velocities of group j (µ̂xj , µ̂yj , ˙̂µxj and ˙̂µyj ), the
fixed time consensus protocol (equation (3.56)) is executed on each robot individually
for the time determined by Tmax (equation (3.57)). Knowing that fixed-time consensus
estimator gains are regulated a priori, this consensus protocol will always converge to
averages (µxj , µyj , µ̇xj and µ̇yj ) (Zhang & Jia, 2015). This is done considering the variables z̄l
and z̄k of the equation (3.56) as, respectively:

• xlj and xkj to estimate µxj ,

• ylj and ykj to estimate µyj ,

• ẋlj and ẋkj to estimate µ̇xj ,

• ẏlj and ẏkj to estimate µ̇yj ,

in which x e y are the components of the position of the robots in the plane, and ẋ and
ẏ are the components of their velocities in the plane (equation (3.2)). Index k indicates
which robot is executing the consensus protocol, and the l index indicates its neighbors
(see equation (3.56)).

To calculate the maximum time Tmax for the protocol to converge to the average of the
initial values, information on the number of robots of group Nj, the algebraic connectivity
λ2 and consensus protocol gains (see equation (3.57)) are required. Consensus protocol
gains can be fixed a priori and can be the same for all robots. Other information (Nj and



44 CHAPTER 3. ABSTRACTION BASED SEGREGATION

λ2) are not available from a robot’s point of view and may vary over time, given that the
robot communication graph may change as robots move and may change when robots are
added or removed from the group.

It is known that an upper bound of the second smallest eigenvalue of the Laplacian
matrix related to a connectivity graph (upper bound of λ2) is given by the number of nodes
in this graph, which in this case is the number of robots in the group itself (Nj) (Gross &
Yellen, 2003). Thus, it is assumed that the robots know an upper bound for Nj which is
also an upper bound of λ2. This means that the robots must know or estimate how many
robots their own group can have and from this data the robot calculates the maximum
time for the consensus protocol to converge to the mean of the initial values. This is a
conservative approach, which makes the time for the consensus protocol to execute from
the initial instant up to Tmax to be longer. Note that one must execute a consensus protocol
for each of the estimated variables.

It is also necessary to compute σ̂j, ˙̂σj and σ̂′j in order that the individual controller of
equation (3.51) to be completely defined. These values appear as a sum divided by the
number of robots, so these values can also be viewed as a “mean”. This can be observed by
analyzing their definitions in the equations (3.5), (3.31) and (3.22). Thus, the computation
of σ̂j, ˙̂σj and σ̂′j can be done using auxiliary variables (z̄σ, z̄σ̇ and z̄σ′ respectively), defining
them:

z̄kσ = (qkj − µ̂kj )T (qkj − µ̂kj ) (3.58)

z̄kσ̇ = 2(qkj − µ̂kj )T q̇kj (3.59)

z̄kσ′ = (q̇kj − ˙̂µ
k

j )T (q̇kj − ˙̂µ
k

j ) (3.60)

These auxiliary variables are initialized on each robot and each one executes the fixed time
consensus protocol (equation (3.56)) long enough (Tmax) so that these auxiliary variables
converge to the average. These averages of the auxiliary variables are the values of σj, σ̇j
and σ′j themselves.

Note that robots never stop moving to wait for the fixed-time consensus protocol
to converge, robots continue to move and use the latest results, in which the protocol
converged to the average, to calculate its controller and move. This works as a zero-order
hold (ZOH), that is, each time one have more recent estimates, these are used for the
computation of the individual control action in equation (3.51). Figure 3.9 shows this
process and the information needed for each robot to fully define its individual control
action (equation (3.51)).

Note that position and velocity averages must be calculated before σ̂j, ˙̂σ and σ̂′j. The
average can be calculated in parallel and after that, also in parallel σ̂j, ˙̂σj and σ̂′j. Thus,
the total time to calculate all estimated states is 2Tmax. One can first execute the fixed
time consensus in parallel to get µ̂xj (Consensus 1), µ̂yj (Consensus 2), ˙̂µxj (Consensus 3)
and ˙̂µyj (Consensus 4), and with these values execute again in parallel to get σ̂j (Consensus
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Figure 3.9: Individual control calculation flowchart for robot k of group j.

5), ˙̂σj (Consensus 6) and σ̂′j (Consensus 7). This whole process is shown in Figure 3.9, in
which the necessary information for each calculation is highlighted.

3.3.2 Considerations

In this section considerations are made about the decentralized controller for segregation
of robot swarms considering some unrealistic assumptions, in order to visualize a future
proof of convergence. The complete proof with more realistic assumptions is a suggestion
of future work.

Consider ∑M

j=1 Nj robots with dynamics given by the equation (3.2) and with a limited
communication radius, given by Rcom, divided into M groups. The following assumptions
were made:

1. There are no collisions between robots and therefore no situations where all robots
in the same group are at one point at the same time

2. The communication graphs of the groups are always connected;

3. The system does not start at a saddle point or global maximum of V (µ);

4. Consensus estimators are executed instantaneously (Tmax = 0);

5. Perfect and immediate communication between robots;

Thus, it is desired that, by applying the equation controller (3.51), the system converge to
a state in which all robots in the same group are grouped while separated from robots in
the other groups.
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These considerations are based on the proof of Section 3.2, but with some clearly
unrealistic assumptions, such as the fact that one can execute consensus estimators in null
time (assumption 4). Assumptions 1 and 2 are strong, but not unrealistic. It is possible
to design swarms of robots having these characteristics. Assumption 5 is not very strong
in the sense that we can consider that the robots have fast and reliable communication,
therefore disregarding lost packages and delays.

Assumption 3 and the part of assumption 1 that states that robots of the same group
are not in the same point at the same time are the same assumptions as those in Section
3.2 and are related to the conditions for the potential function to converge to situations
where there are no groups at a distance smaller than dα when t→∞.

Considering the assumption 4 and knowing that the fixed time consensus always
converges to the average, one has that all the states of abstractions necessary for the
calculation of individual control (equation (3.51)) need to be computed instantly and
accurately. Thus, one has that all estimated variables will be exactly the same as the
corresponding variables for all robots: µ̂xj = µxj , µ̂yj = µyj , ˙̂µxj = µ̇xj , ˙̂µyj = µ̂yj , σ̂j = σj, ˙̂σ = σ̇

e σ̂′j = σ′j.
Note that robots get state information from other groups from the nearest robots

belonging to these other groups to calculate the control action µ̂Uk
j to separate groups.

However, each robot can communicate with robots from different groups, so even with
“ideal” estimators each robot gets a µ̂Uk

j computation individually.
The controller that dictates the evolution of the size of abstractions (σUk

j ) will be
exactly the same as the controller with the same purpose in Section 3.2, only the control
action that dictates the separation of groups (µ̂Uk

j ) will be different. This difference is
because each robot can have communication with different robots from other groups. It
is not assumed that robots in one group maintain communication with robots in other
groups. If a robot has no communication with any robot from another group, then the
part of its control action that dictates the separation of the groups (µ̂Uk

j ) will be equal to
zero. The potential function acts by applying a virtual force in the center of the group of
robot k to every robot from another group within its communication radius, as exemplified
in the Figure 3.11. This makes this robot and consequently, its group, move in order to
“repel” neighboring groups.

To guarantee that the k-th robot of group i has information about at least one robot
of the j-th group, when the j-th group is in the neighborhood of i, we consider that:

R2
com ≥ (Ri + r)2 +R2

j (3.61)

Rcom ≥
√

(Ri + r)2 +R2
j . (3.62)

As it can be seen in Figure 3.10, with this restriction, in the worst case, when a robot is
in the furthest point from the other abstraction, it can still “see” the mean of the other
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Figure 3.10: Potential force acting at the center of the groups.

Figure 3.11: Relation between the communication radius and the parameters of the
abstractions and potential function: (Rcom, r, Ri, Rj).

abstraction, which means that it can “see” at least a robot from the other abstraction.
Thus, as the abstractions will reach the desired size (σdes) and this size is such that

there are no intersections between the abstractions (see Section 3.2) and the robots will
always “repel” neighboring abstractions that are invading its abstraction, the problem of
segregating swarms of robots using local information as defined in Section 3.1.2 is solved,
as exemplified by the simulations in Section 5.1.2.

Note that this controller has some disadvantages compared to the controller of Section
3.2. First, collisions are not handled and a local controller would be needed to avoid
collisions so that this controller could be implemented in real robots. In addition, this new
controller has a clearly unrealistic assumption (assumption 4), because it is not possible to
make calculations that demand Tmax seconds instantly. In practice, after this calculation
is performed, the robot has already moved so it would be necessary to recalculate. This
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consideration is less unrealistic if each robot has great internal processing capabilities.
Finally, there is no proof of convergence for this decentralized controller.

As future work, we intend to model the errors of the estimates as uncertainties so that
we can consider the real effects of Tmax. With that, we want to develop a convergence
proof that is robust to these effects.

This controller also has a great advantage over the controller of the Section 3.2 and
some controllers for segregation found in the literature (see Section 2.2): each robot do
not need global information, and yet, the system can apparently reach segregation.



4
Hierarchy Based Segregation

In this chapter a new idea is introduced in order to obtain controllers to reach segregation
in swarms of robots. The idea consists in using a consensus based algorithm to position
robots and a heuristic in which robots exchange information in order to decide where they
should be positioned according to which group they belong. This idea is different from the
one presented in Chapter 3, however, the intention is to solve similar problems.

The same idea is used to propose controllers for two problems: to segregate groups of
robots into clusters (similar to the problem defined in Chapter 3) and to segregate groups
of robots radially. Next, in Section 4.1, we lay a background that will be common for both
problems. In Sections 4.2 and 4.3 we present the methodology for each problem.

In the methodology of Section 4.2, only one scenario is considered, which requires
robots to communicate by means of an underlying fixed topology and have knowledge of a
previously defined parameterized curve. Also, collisions amongst robots are considered.
In the methodology of Section 4.3, we consider two different scenarios, in which the first
scenario has the same assumptions of the scenario considered in Section 4.2, except that
in that section the knowledge of a curve is not required. The second scenario does not
require an underlying communication topology but does require that all the robots have
the knowledge of the same fixed point in the environment. In this section, collisions
amongst robots are disregarded.

49
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4.1 Background

Consider N holonomic robots moving in a two-dimensional Euclidean obstacle-free envi-
ronment.

The dynamics of each robot is given by the double integrator, as in Chapter 3.

q̇i = vi, v̇i = ui, i = 1, 2, ..., N ; (4.1)

in which qi = [xi; yi]T , vi = [ẋi; ẏi]T and ui = [uxi;uyi]T are the position, velocity and control
input vectors for the 2D case, respectively.

Each robot is assigned to a group Nk, k ∈ M = {1; 2; ...,M} and M is the number
of groups. Therefore, the system is composed of N robots divided into the groups
N1, N2, ..., NM . Robots of the same group are considered to be robots of the same type.

Note that there are some differences in the initial definitions in relation to the definitions
in Chapter 3, namely, in this chapter we do not use indexes to assign robots to groups as
the controller in this chapter will be defined for all the robots of the system regardless of
the robot’s group.

4.1.1 Required Information

Consider that each robot has a communication radius Rcom that is the same for all the
robots in the system. An example of this communication radius is showed in Figure 4.1,
in which the bigger blue circle shows the radius Rcom for the blue robot. It can be seen
that the blue robot has communication with two other robots (one red and one green)
and does not have communication with the green robot that is outside the radius Rcom.

Figure 4.1: Communication radius example.

Consider the group of all robots in the system: R. Also consider the previously
defined groups of robots of the same type Nk. We now define an ordered set of groups:
G = {N1, N2, ..., NM}. We assume that this set of groups is a totally ordered set with a
pre-defined binary relation (<). Consider the mapping that associates each robot to its
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corresponding group: h : R → G. As G is a totally ordered set with a pre-defined binary
relation, we can define a hierarchy such that:

h(RN 1) < h(RN 2) < ... < h(RNM), (4.2)

where RNk is any arbitrary robot of group Nk. We also define that h(Nk) returns the
corresponding value to the robots of group k. Given the order in (4.2) when a robot from
group 1 has communication with a robot from group 2, the robot from group 1 knows that
the robot from group 2 is from a group with higher order in the hierarchy (h(N2) > h(N1))
and exchange information based on this hierarchy, when they are close enough. We
assume that robots do not have the information of how many groups there
are in the system or how these robots are distributed in groups. Moreover,
although we do not assume the robots know the whole set order, we do assume
that they are able to compute the result of a comparison with robots of other
groups according to the binary relation (<). Thus, when robot i (Ri) meets robot
j (Rj) they are able to access the result of the comparison h(Ri) < h(Rj). This ability to
compare will be useful when defining a heuristic to dynamically allocate different desired
positions to different groups.

In the next two sections we present two methodologies: in Section 4.2 we deal with the
problem of segregating groups of robots into clusters and in Section 4.3 we deal with the
problem of segregating groups of robots radially.

4.2 Methodology - Segregation in Curves

All the development in this section can be directly extended for robots in a three dimensional
environment. Note that this is not the case for the development in Section 4.3.

The dynamics of each robot is given by (4.1). In which, for the 3D case, the position,
velocity and control input vectors are, respectively: qi = [xi; yi; zi]T , vi = [ẋi; ẏi; żi]T and
ui = [uxi;uyi;uzi]T .

4.2.1 Problem definition

Consider an unlimited open curve without self s(di) : R→ RD We assume that each robot
has the knowledge of the parametric equations of this open curve with the parameter
given by the length from a point considered to be the origin, i.e. they can retrieve the
coordinates in the curve when given the length from its origin.

Our goal is to investigate the problem of segregation in swarms of heterogeneous robots.
All the robots should converge to a state where robots of the same type are close while they
are separated from robots of different types, i.e., robots must form clusters with other robots
of the same type.
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In this section we present a new approach to segregate swarms of robots into clusters
given the knowledge of a curve. The approach is based on the use of a formation control
scheme where the desired formation pattern changes according to the robot groups in a
way that each group travel different distances from the origin of the curve s(di).

4.2.2 Specific Required Information

In this section, we consider that robots can exchange information in two manners: (i)
through an underlying fixed communication topology; (ii) when they are close enough.
The underlying topology does not depend on the position of the robots, and we assume
that the topology is fixed and connected all times. A communication graph is induced
using both (i) and (ii). This graph is built considering the robots as nodes and defining
edges between two robots if they are connected via the underlying fixed communication
topology or if they are in the communication range of one another. Please refer to the
Appendix A.1.1 to review the basic concepts in graph theory.

Moreover, we assume that robots can compute the comparison as stated in Section
4.1.1.

Finally, all robots must have the knowledge of the parametric equations of the same
open curve.

4.2.3 Formation Control

Our method builds upon a formation control algorithm with collision avoidance adapted
from the work of Mondal & Jamshidi (2017), in which the author proposes a trajectory
tracking consensus algorithm with collision avoidance and connectivity assurance. In our
work, as we want to segregate groups of robots, connectivity assurance is disregarded.
Furthermore, as we are interested in reducing the quantity of information each robot
requires, we use an absolute velocity damping term instead of the relative velocity damping
term and the formation velocity used in Mondal & Jamshidi (2017).

Consider that the i-th robot has a desired position vector associated with it. Each
desired position is given by the terms of a parametric equation of a given open curve, s(di),
plus a component wi. The parameter di can be seen as the distance that the robot has to
travel along the curve from its origin. Component wi is a random vector to be added to a
point on the curve so that robots converge to a region near that point. Those parameters
will be better explained in Section 4.2.4. In this section, as in Mondal & Jamshidi (2017),
we use the position error as the consensus variable,

ei = qi − s(di)−wi, (4.3)

in which s(di) +wi is the desired position for the i-th robot.
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Consider the following formation maintenance control law with relative position error
measurements and an absolute velocity damping term

ufori = −
N∑
j=1

aij(ei − ej)︸ ︷︷ ︸
Formation Control

− γq̇i︸︷︷︸
Velocity Damping

, (4.4)

in which aij = aji is given by the elements of an adjacency matrix from an arbitrary
connected communication topology and γ > 0 is a fixed gain. The gain γ is associated in
the performance of the consensus. It can be regulated to improve the speed in which the
consensus is achieved. Any positive value ensure the consensus convergence.

4.2.4 Distance travelled

Each robot must compute its own parameter di to be able to compute (4.3) and then (4.4).
The parameter di, also called the distance travelled, will be the composition of two terms:

di = ribi. (4.5)

The term ri can be seen as robot’s i estimated position of its group in the group
hierarchy, and will be better explained in Section 4.2.4.1. The term bi will be responsible
to keep increasing the distance among groups while they are not segregated, and will be
better explained in Section 4.2.4.2.

4.2.4.1 Estimated position on the group hierarchy

To assign the estimated position on the group hierarchy ri to each robot we propose a
heuristic that dynamically changes robot’s ri when a robot is able to exchange information
with other robots that are within the communication radius Rcom.

In Algorithm 4.1 we show the local control algorithm for robot i in which it is possible
to see the heuristics to change its estimated position in the group hierarchy.

Each robot can perceive other robots within its communication radius and broadcast
its own hi, ri and wi (line 3). Furthermore, robots broadcast its own ei and robots that are
interconnected in the underlying topology can receive it (line 5). The robots also receive
the broadcasted hj, rj, qj and wj from all the other robots within its communication radius
(line 8).

In Algorithm 4.1, lines 9-13, when a robot i meets a robot j that belongs to a group
that is lower in the hierarchy than the group of robot i (hi > hj), with an estimated
position on the group hierarchy that is greater or equal to ri, robot i change its estimated
position on the group hierarchy with an increment of 1 with respect to rj. This means
that robot i, of the group higher in the hierarchy will move away from the beginning of
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Algorithm 4.1 Control Algorithm for robot i.
1: Initialize ri = 0, wi = [0, 0]T or [0, 0, 0]T , Wi = 0;
2: while Active do
3: Broadcast hi, ri, wi, ei;
4: for all qj such that aij = 1 do
5: Receive ej;
6: end for
7: for all qj such that ‖qj − qi‖ < c do
8: Receive hj, rj, qj, wj

9: if hi > hj then . Robot i belongs to higher hierarchy group in comparison to robot j.
10: if rj >= ri then
11: ri ← rj + 1
12: end if
13: end if
14: if hi 6= hj then . Robots i and j are from different groups.
15: Increment bi in (4.6) . At the discrete times in which Robot i is within range of any

other robot of a different group
16: end if
17: if hi = hj then . Robots i and j are from the same group.
18: if rj > ri then
19: ri ← rj
20: end if
21: if wj is such that ‖wj −wi‖ < cout then
22: Wi ← sat(Wi + δW ,

c

2
√

2)
23: wi ← rand(−Wi,Wi)
24: end if
25: end if
26: end for
27: Keep running consensus (4.7)
28: Compute (4.5) with ri and bi
29: Move according to control law (4.11)

the curve, thus segregating itself from the robot j, that belongs to the group lower in the
hierarchy.

In lines 14-16, when a robot i meets a robot j from a different group, robot i increases
its segregation distance, as it will be clear in (4.6).

In lines 17-20, when a robot i meets a robot j from the same group, robot i receives the
value of the estimated position on the group hierarchy of robot j and if this value is greater
than the one robot i already has then sets its position to the same value received from
robot j. This means that robot j had met another robot from another group that is lower
in the hierarchy and is now broadcasting this information to robot i. Furthermore, in lines
21-24, if robots of the same group have desired positions that would activate the collision
avoidance controller when they converge to this position, robot i chooses a new random
position from an increased region centered at the point given by s(di). Moreover, Wi is
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the size of the region for the i-th robot, δW is a small fixed parameter that dictates how
much the region grows each time and rand(−Wi,Wi) is a function that returns values for
the components of a vector from a uniform distribution in the interval (−Wi,Wi). Column
vector wi is 2D or 3D depending on the case considered and Wi is a scalar. The square
region is saturated by the function sat(Wi + δW , c/2

√
2), thus, has maximum side size of

c/
√

2. The saturation occurs to guarantee that robots of a group will remain in a region
near a point in the curve related to that group, so that robots from other groups are
guaranteed to have encounters at this region. The reason we consider this region will be
better explained in Section 4.2.7.1.

Note that, in Algorithm 4.1, robots communicate in two different ways: in lines 4-6,
robots are communicating only through the underlying fixed communication topology
(aij = 1) and in lines 7-24 robots are communicating only when they are close enough
(‖qj − qi‖ < c).

If one robot has encountered at least one robot from every other group, the estimated
position on the group hierarchy of robot i (ri) will converge to its true position on the
hierarchy. Our scheme was designed to make sure that robots have meetings with at least
one robot of each of the other groups, or get this information from other groups, therefore,
we have that the estimated position on the group hierarchy of robot i will always converge
to the true position on the hierarchy. This fact will help in the convergence proof in section
4.2.7.

Figure 4.2 shows an example with 3 robots and 3 groups segregating using Algorithm
4.1 and a horizontal line. In this figure, all robots initialize its estimated position in the
group hierarchy believing that its group is the first one in the hierarchy. Their current
estimation are represented by the boxes. As robots have encounters, they update their
estimated position in the group hierarchy and move accordingly. With enough encounters,
robots segregate. As there are only one robot per group, lines 17-24 of algorithm 4.1 are
never executed.

4.2.4.2 Segregation distance

Since we have interest in developing algorithms in which robots do not need to exchange
information with all the other robots of the system, we will propose a decentralized scheme
to compute a segregation distance (bi) between groups so that groups keep segregating
while there are robots from different groups “seeing each other”, within range Rcom. This
is also interesting in the sense that one could change the system size (number of robots
and groups) and this parameter would adjust so that this new system would also converge
to a segregated state.

This segregation distance is initialized with zero for all robots and will increase when
two robots, i and j, from different groups are within range from each other by performing
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Figure 4.2: Example of the heuristics with 3 robots. Group order in the hierarchy in
ascending order is: purple group, green group and red group. Smaller circles represent
the robots and bigger circles represent the communication radius of the robots. Boxes
indicate the estimated position on the group hierarchy of each robot. The curve used in a
horizontal line. (a) Two robots of two different groups initiating consensus. (b) Robots are
communicating for the first time, they compare their hierarchy. The red robot discover
that it is higher in the hierarchy than the purple robot. (c) A third robot arrives, the
green one. As the green robot has never meet another robot, it proceeds to the origin of
the curve. (d) In the origin, the green robot and the purple robot have an encounter and
the green robot update its estimation and goes to the next position in the curve. (e) The
green robot have an encounter with the red robot. The red robot update its estimation
and move to the next position in the curve. (f) Groups are segregated.

the following computation:

bi ← bi + δb, and bj ← bj + δb, (4.6)

in which δb is a fixed small parameter.
After robots have increased bi, if necessary, we have proposed an information consensus

scheme to make all robots agree on the same segregation distance. Each robot will run a
simple first order consensus algorithm:

bi(Ns + 1) = bi(Ns)−
N∑
j=1

aij(bi(Ns)− bj(Ns)), (4.7)

in which aij = 1 if robots i and j are connected in the underlying communication topology
and aij = 0, otherwise and Ns is the number of samples in Algorithm 4.1.

This consensus should always be running, and at discrete time events, bi
changes discretely according to (4.6) if there are robots of other groups within
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the range Rcom.
This exchange of information will guarantee that all the robots in the system will

eventually agree with the same value for bi and consequently, di, which will be important
for the proof of convergence in section 4.2.6.

After updating its estimated position on the group hierarchy (ri) and the segregation
distance (bi), robots can compute the distance travelled in the curve by means of (4.5), and
consequently, robots can compute the consensus error (4.3) and then move accordingly.
This can be seen in Algorithm 4.1, lines 27-29.

Figure 4.3: Scheme showing the distance in which the collision avoidance is activated
(cout), the considered robot size for the collision avoidance (cin) and the communication
range of a robot (Rcom).

4.2.5 Collision Avoidance

Also consider a collision avoidance controller based on an artificial potential function,
integrated with our controller, as in Mondal & Jamshidi (2017). We consider two circular
regions around each robot, with radii cin and cout as can be seen in Figure 4.3. The collision
avoidance region is bounded by those two circles. The collision avoidance term is active
when a pair of robots i and j are inside the collision avoidance region, i.e., when two
robots collision avoidance region intersect. This controller is zero when ‖qi − qj‖ ≥ cout.
The potential function with a finite cutoff at cout is given by Mondal & Jamshidi (2017):

ψcol(x) =


´ x
cout

φcol(s)ds, for x ∈ [cin, cout)
0, otherwise,

(4.8)

in which φcol(s) is such that ψcol(x) is strictly decreasing and has maximum value at cin:

φcol(s) = − ‖qij‖
(‖qij‖ − cin)2 + 1

Qcol

. (4.9)
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The collision avoidance for robot i is defined, as in Mondal & Jamshidi (2017):

ucoli = −
∑
j∈Ni

Oqi
ψcol(‖qij‖). (4.10)

in which Ni is the set of all the robots within a distance smaller than cout from robot i,
‖qij‖ is the distance between robots i and j and Qcol > 0 in 4.9 is a fixed parameter that
will be better explained in section (4.2.7.2).

4.2.6 The Complete Control Law

Consider:

1. The formation control to make all robots converge to a region near a curve (section
4.2.3);

2. The heuristics to decide where in the curve robots should converge depending on its
group (section 4.2.4);

3. The collision avoidance controller (section 4.2.5).

By combining those controllers, we can now define the complete control that will
guide the movement of each robot. First using the heuristics of section (4.2.4) robots
can compute (4.5). Then, using the definition (4.3), robots can completely define (4.4).
Finally, composing (4.4) and (4.10) we can move the robots modeled by the dynamics of
(4.1). Thus, each robot will be guided by the control law

ui = −
N∑
j=1

aij(ei − ej)− γq̇i︸ ︷︷ ︸
u
for
i

−
∑
j∈Ni

Oqi
ψcol(‖qij‖)︸ ︷︷ ︸
ucol
i

. (4.11)

in which aij are the elements of the adjacency matrix of the fixed underlying topology. Also,
ufori is the formation control controller given by (4.3) and ucoli is the collision avoidance
controller given by (4.10).

4.2.7 Controlled System Analysis

In order to show how our approach will lead groups of robots to a segregated state, first
we show how the controller (4.11) will lead each robot to its desired position without
collisions. After that we show how our heuristics to compute the desired position for each
robot will lead groups to a segregated state.
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4.2.7.1 Ensuring formation control and collision avoidance

Our controller (4.4) is a simplified version of the controller proposed by Mondal & Jamshidi
(2017). In comparison to the controller used in Mondal & Jamshidi (2017), in our controller
we disregard the connectivity maintenance term, we also disregard the formation velocity
consensus term, and we set the desired formation velocity to zero.

Furthermore, in our approach, the desired formation will change at discrete times.
Robots from the same group will acquire a new desired position whenever their desired
position will mean that the collision avoidance term will be active, when the desired position
is reached. As the robots draw new desired position vectors randomly from an increasing
area centered at a point in the curve, eventually all the robots will acquire points that will
mean that they have reached a valid formation. We are assuming uniform distribution
in our sampling, and thus if the relation between Rcom and cout is adequate, arguments
similar to the ones to show probabilistic completeness of sampling based planners can
be used to show that the probability of sampling a valid configuration tends to 1 as the
number of samples goes to infinity. A valid formation is the one in which all robots are at
a distance greater than cout, meaning that the collision avoidance term is not active. Also,
as robots only draw new positions when they are close and the area that they draw from
increases with small increments, and saturated at c/2

√
2, robots of the same group will

remain close. Note that the valid formation is equivalent to the formations considered in
Mondal & Jamshidi (2017), disregarding the connectivity maintenance part.

In Figure 4.4 we show an example of a curve, a region in which robots draw desired
positions, and two robots (one blue and one red). The desired point in the curve (s(di))
is depicted by a black dot. Considering that the region is saturated at c/2

√
2, this is the

case in which the robots are farther apart, inside the region. As one can see in the Figure
4.4, in this case, the worst one, robots are still in the communication range of each other.
This is the reason for the use of the saturation function (line 22, Algorithm 4.1).

The scheme to make a robot acquire a new position constrained in a square region
is designed so that when other robots are in the same region, there will be a encounter.
This fact will ensure that the robots of each group converges to the region they should
converge, as it will be show in 4.2.7.3.

In order to show that robots will converge to the desired positions, without the
occurrence of collisions between robots we rely on the same reasoning of Mondal &
Jamshidi (2017) but using the following positive semi-definite function instead of the one
used in Mondal & Jamshidi (2017):

VE = 1
2

N∑
i=1

∑
j∈Ni

ψcol(‖qij‖) + vTi vi

+ 1
2e

T (L⊗ ID)e. (4.12)

in which L is the Laplacian matrix related to the fixed underlying topology of the system,
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Figure 4.4: Example of a curve, two robots and the region that robots draw desired
positions from.

ID ∈ RD×D is the identity matrix, D is the dimension of the system (2 or 3), ⊗ denotes
the Kronecker product and e is the stacked vector of the errors e = [eT1 , eT2 , ..., eTN ]. Also
consider the time derivative of (4.12):

V̇E =
N∑
i=1

q̇iT ∑
j∈Ni

Oqi
ψcol(‖qij‖) + vTi v̇i

+ eT (L⊗ ID)ė. (4.13)

Following a similar development as in Mondal & Jamshidi (2017), and using (4.1), we
have that

V̇E =
N∑
i=1

viT ∑
j∈Ni

Oqi
ψcol(‖qij‖) + vTi ui

+ eT (L⊗ ID)v. (4.14)

Substituting from (4.11)

V̇E =
N∑
i=1

vTi ∑
j∈Ni

Oqi
ψcol(‖qij‖)

+vTi

−∑
j∈Ni

Oqi
ψcol(‖qij‖)−

N∑
j=1

aij(ei − ej)− γvi




+ eT (L⊗ ID)v. (4.15)

Rearranging

V̇E = −
N∑
i=1

vTi

N∑
j=1

aij(ei − ej)− γ
N∑
i=1

vTi vi + eT (L⊗ ID)v. (4.16)

Using the property of Laplacians

N∑
i=1

vTi

N∑
j=1

aij(ei − ej) = vT (L⊗ ID)e (4.17)
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and the fact that eT (L⊗ ID)v can be writen as vT (L⊗ ID)e we have that

V̇E = −γ
N∑
i=1

vTi vi (4.18)

V̇E ≤ 0. (4.19)

V̇E is negative semidefinite, thus, VE is a nonincreasing function and will never become
unbounded.

Also, following the same reasoning as Mondal & Jamshidi (2017), applying Barbalat’s
lemma, one can show that V̇E = −γ

∑N

i=1 v
T
i vi → 0 as t→∞. This implies that vi → 0 as

t→∞ for all i and v̇i = ui → 0, which is possible only when all the individual control parts
become zero. Using (4.11), ei → ej and vi → 0 as t → ∞ ∀j ∈ Ni. Thus, the formation
position error consensus is achieved and the velocity of all robots goes to zero. This means
that robots will converge to a region near the point s(di). This region is constructed in a
way that robots are close to the point s(di) and from other robots from the same group
but are not close enough to activate the collision avoidance term ucoli .

4.2.7.2 Design of collision avoidance potential function

To ensure that there will be no collisions between robots, We can compute Qcol according
to Mondal & Jamshidi (2017). Assume

φ̄col(‖qij‖) = ‖qij‖
(‖qij‖ − cin)2

(4.20)

and
ψ̄col(‖qij‖) > ψcol(‖qij‖). (4.21)

Also assume

V̄E = 1
2

N∑
i=1

∑
j∈Ni

ψ̄col(‖qij‖) + vTi vi

+ 1
2e

T (L⊗ ID)e, (4.22)

Clearly V̄E(t) ≥ VE(t), VE(t) ≤ VE(0), thus we can choose

E0 = V̄E(0). (4.23)

The collision avoidance potential function ψcol is designed so that

VE(t) ≤ VE(0) ≤ E0 < ψmaxcol (‖qij‖) (4.24)

∀i, j ∈ Ni. The potential will give its maximum value when ‖qij‖ = cin, hence

ψmaxcol (‖qij‖) = Qcol ∗ cin ∗ (cout − cin) (4.25)
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∀i, j ∈ Ni.
Qcol ∗ cin ∗ (cout − cin) > E0 ≥ VE(0) (4.26)

which implies
Qcol >

E0

cin(cout − cin) . (4.27)

For a given desired position and initial position of the robots and cin, cout, value of Qcol

can be calculated using (4.27). This designed value ensures collision avoidance. For VE to
become unbounded, ψcol has to become unbounded for at least one robot. The collision
avoidance tends to become unbounded when

‖qij‖ → cin. (4.28)

But we have shown in (4.18) that VE is always bounded, so ψcol never becomes unbounded,
for any robot i. Thus for any pair of robots i and j,

cin < ‖qij‖ (4.29)

which ensures no collision between robots.
Finally, as now we know that the robots will converge to their desired positions, with

zero velocity and without collisions, we need to show that the proposed heuristics is able
to find such desired positions to ensure segregation between groups.

4.2.7.3 Ensuring segregation between groups

Now, we show how our heuristics to dynamically assign a desired position on the curve
(di) to each robot will make the system always reach a segregated state.

Theorem 2. Assume the following hypotheses:

(i) Individual robots are governed by the dynamics in (4.1) with communication radius
Rcom;

(ii) There is a connected underlying communication topology and a global knowledge of
an unlimited curve;

(iii) Groups and a binary relation between groups are defined in such a way that a strictly
totally ordered set of groups is induced;

(iv) Each robot i is able to compute if the order of its group is greater, equal, or less than
the order of the group of any other robot j according to the predefined binary relation
when the information about the group of robot j is made available;
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(v) The relation between Rcom and cout is such that all the robots in each group can fit
in a square region of side given by c/

√
2 in a way that collision avoidance is not

activated.

Then, by applying the Algorithm 4.1 in the control of each individual robot, the
probability of the multi-robot system converge to a segregated state as defined in Section
4.2.1 tends to 1 as t→∞.

Proof. From facts (iii) and (iv) we can assume that Algorithm 4.1 can run as all the
comparisons can be properly computed. From facts (ii), (v) and the analysis in section
4.2.7.1 we know that robots will converge to a region near the point in the curve s
at a distance di from the origin of the curve with zero velocity, and the probability of
convergence to a valid configuration goes to 1 as Ns (number of samples in Algorithm 4.1)
goes to infinity, assuming the proper relation between Rcom and cout. Therefore, in order to
show segregation we need to show that the distance di of each group is such that robots of
the same group remain close while apart from robots of different groups.

We will show that robot’s estimated position on the group hierarchy (ri) will converge
to the real position of the group in the hierarchy and we will show that the segregation
distance (bi) will keep increasing in a way that group segregation is achieved and will be
the same for all robots in the system.

We will first show that the first group’s estimated position on the group hierarchy will
converge to ri = 0. Then, employing induction, we follow to show that the other groups
estimation will increase according to its group order in the group hierarchy.

According to Algorithm 4.1, all the robots start with ri = 0 and the only possible
changes in the parameter r implies that ri = λ, where λ ∈ N. The changes can only occur
when robots meet within a radius Rcom, which is the same for every robot. Moreover, the
parameter r never decreases, it might only increase in case robot i receives the information
about the existence of another robot j of a different group so that hi > hj and rj ≥ ri or
another robot j of the same group so that rj ≥ ri. As the set of groups is a strictly totally
ordered set, and the changes are given by ri = rj + 1 for hi > hj or ri = rj for hi = hj it is
guaranteed that the parameter r of the robots of the group which is the least element of
the set, i.e. h1 < hj ∀j, never changes, i.e., r1 = 0. This implies in the convergence of the
first group’s estimated position on the group hierarchy to its real position on the group
hierarchy, consequently, it implies in the convergence of the first group to the beginning of
the curve s, i.e d1 = 0.

Now consider the hypothesis: all the robots of groups 1, 2, ..., k, where h(N1) < h(N2) <
... < h(Nk), have converged to the corresponding rN1 = 0, rN2 = 1, rN3 = 2, ..., rNk = k − 1.
According to Algorithm 4.1 and the strict total order it is impossible to have a change
in rNk+1 of a robot of group Nk+1 when meeting robots of groups Nk+2, Nk+3, ..., NM as
h(Nk+1) < h(Nk+2) < h(Nk+3) < ... < h(NM). From this and the initial conditions, ri = 0 ∀i,
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we can conclude that rNk+1 of group Nk+1 must converge to rNk+1 = λ where λ ∈ {0, 1, 2, ..., k}.
From (4.7) and fact (ii), we can conclude that there is a finite time t and a small value

ε such that the variables of the system reach a value with a distance smaller than ε from
the mean of initial values, from the instant in which bi stopped increasing, ∀i. This means
that, eventually, limt→∞ di = bλ, λ ∈ {0, 1, 2, ..., k} in which b acts only as a gain and is
the average value of bi, for all robots in the system. Therefore, robots will only move to
regions near fixed points in the curve. Given this fact and the hypothesis of convergence
of groups N1, ..., Nk we can guarantee that a robot from group Nk+1 will always receive
information about the existence of other robots in the same curve and the corresponding
value h(Nl) for comparison when ri = λ with λ ∈ {0, 1, 2, ..., k}. From this we can conclude
that it is impossible for a robot of group Nk+1 to converge to a region near the point on
the curve equivalent to ri = λ with λ ∈ {0, 1, 2, ..., k − 1}. According to Algorithm 4.1 and
the convergence of the consensus protocol (4.7), being aware of robots already in their
correct region near the position on the curve implies in the increment of the radius of the
robots of group Nk+1. Therefore, we can conclude that the only possible region near the
position on the curve for convergence is the one where ri = k, i.e. di ≈ bk.

By induction, we can conclude that each robot i of group Nl in the group hierarchy will
converge to ri = (l− 1), ∀i,∀l. Also, given the fact that bi tends to be the same in the limit
for all the robots and the fact that bi will only increase when robots from one group are
seeing robots from other groups (equation (4.6)), we have that bi will keep increasing while
robots from different groups are near. Therefore, considering that the desired position of
each robot in the curve (di) will always be such that no robot from different groups are
within range from each other, ufori will guide robots of the same group to be close to the
same point in the curve. Nevertheless, as robots do not collide, they will form clusters
near the desired position on the curve for its group. If in the formed cluster a robot is
within range from another robot from other group, bi will increase and make sure the
distance from different groups increase, thus, segregation will always be achieved.

4.3 Methodology - Radial Segregation

In chapter 3 and in the last section we have considered the so called cluster segregation.
Now we consider a different problem: radial segregation.

One possible application of the radial segregation are scenarios where the task of
multiple targets enclosure (Kubo et al., 2014) is considered, in which different targets
have to be enclosed by different groups of robots. Furthermore, the formation of annular
structures, and of center-periphery patterns in particular, might be useful in a range of
applications. Examples include re-configurable nested membrane structures in biomedical
applications and dynamically constructed defense structures in military applications (Chen
et al., 2012).
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4.3.1 Problem definition

We aim to investigate the problem of radially segregating autonomous swarms of robots
considering only the use of local information. All the robots should converge to a state
where robots of the same type are positioned at the same distance with respect to a given
point while these distances are different for robots of different types.

Figure 4.5: System of 15 robots divided in 3 groups radially segregated.

Figure 4.5 shows a system with 15 radially segregated robots divided in 3 groups
in which robots of the same group have the same color. In Figure 4.5, dashed circles
indicate that robots have indeed the same distance with respect to a given point that is
represented by the small black circle. It is preferable to have robots of the same group
equally distributed in the corresponding circle, as in figure 4.5, even though this is not a
requirement.

In this section we present a new approach to radially segregate swarms of robots. The
approach is based on the control of virtual points associated with the robots. The approach
is similar to the approach presented in Section 4.2, in the sense that both use consensus
algorithms to guide the movement of the robots and a heuristic to decide where groups
should converge to. To facilitate the comprehension of each approach, in this section the
consensus algorithm is formulated in the context of a rendezvous problem and in Section
4.2 it is formulated as a formation control problem although both algorithms have some
similarities as it will become clear next. Note that in the approach of this section collisions
between robots are disregarded.

4.3.2 Specific Required Information

In this section, we will consider two scenarios. Scenario 1 has similar considerations to
those of Section 4.2, in which robots can exchange information in two manners: (i) through
an underlying fixed communication topology; (ii) when they are close enough. In Scenario
2 we consider that robots only exchange information when they are close, however, we
also consider that all robots have the knowledge of the same point in the environment.
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A different communication graph is built depending on the considered Scenario, as it
will be clear in Section 4.3.4.

Furthermore, the same assumptions regarding the knowledge of a hierarchy induced by
an order in the set of groups with the definition of a binary relation (<) are considered, as
explained in Section 4.1.1.

Figure 4.6: Example of virtual point for a robot.

4.3.3 Virtual points

Consider that the i-th robot has a virtual point zi associated with it. Figure 4.6 shows
an arrow pointing to the virtual point of a robot. Each virtual point has an angle θi and
a radius ri associated with it. Those variables are the polar coordinates of the point as
seen from a frame attached to the robot. We assume that each robot’s virtual point is
initialized with a random angle θi and the same distance ri = d, in which d is a parameter
dependent of Rcom and Rcom is the communication radius of the robots. Therefore, for the
i-th robot of the system we have that zi = qi + δi, in which δi = [ri cos θi ri sin θi]T . The
robot dynamics is given by the double integrator (4.1), thus, to relate the motion of the
robot with the motion of the virtual point we have that

q̈i = z̈i − δ̈i, (4.30)

and differentiating δi twice, with constant ri, we have that

δ̈i =

−ri(θ̈i sin θi + θ̇i
2 cos θi)

ri(θ̈i cos θi − θ̇i
2 sin θi)

 . (4.31)

In this differentiation we considered ri as a constant. In our approach ri will be allowed to
change only at some specific discrete events instantaneously as it will be clear later when
we present an algorithm to execute this change.

To achieve radial segregation in the system, we design a controller for the virtual points
considering:

z̈i = ûi, (4.32)
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by enforcing ui = ûi− δ̈i, from (4.1) and (4.30). This controller will be such that all virtual
points converge to the same point eventually.

In this section, the main idea consists in using a consensus based algorithm to drive
virtual points attached to the robots and a heuristic to define the radius, ri, of the virtual
point. Concomitantly, robots spread themselves along the virtual circles where virtual
points rendezvous.

We consider two different scenarios in which we use the same main idea for radial
segregation. The scenarios differ in the information which is available for the robots and
the communication topology. Note that, in the controller shown in Section 4.2, only the
Scenario 1 is used.

4.3.4 Consensus Algorithm

In both scenarios the radius heuristics (Section 4.3.5) and the angle controller (Section 4.3.6)
are used in the same way. The only difference is in the consensus algorithm. In both
scenarios we use a consensus algorithm as it is usually done in the context of the multi-robot
rendezvous (Jadbabaie & Morse, 2003). Next, we detail how the consensus controllers will
differ from each other.

4.3.4.1 Scenario 1 - Underlying fixed communication topology

In this scenario, we consider that robots can communicate using a fixed underlying topology.
Moreover, we assume that robots have no prior knowledge of a common reference point to
guide the consensus algorithm. The communication topology must be connected and it is
not dependent on the distance between pairs of robots. To control the virtual points we
use the following consensus algorithm:

ûi = −
N∑
j=1

aij[(zi − zj) + γ(żi − żj)], (4.33)

in which γ is a positive gain, żi = q̇i + δ̇i and aij = aji is given by the elements of an
adjacency matrix associated with the connected communication topology.

4.3.4.2 Scenario 2 - Robots know a reference point

In this scenario we consider that all the robots know a priori exactly the location of a
reference point. However, in this scenario robots cannot communicate outside a given
range. We consider that the reference point is o = [0, 0]T , for the sake of simplicity.

We use the reference point in the consensus algorithm as if it were a fixed leader robot
positioned at the reference point. Therefore, the global system configuration is given
by: q̆ = [qT1 , qT2 , ..., qTN ,o]T . Similarly, we consider also the extended z̆ and ˘̇z (for z and ż,
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respectively) in which we consider ˘̇zN+1 = [0, 0]T and z̆N+1 = [0, 0]T . Thus, the consensus
algorithm used for Scenario 2 is:

ûi = −zi − γżi −
N∑
j=1

aij[(zi − zj) + γ(żi − żj)], (4.34)

in which aij is given by:

aij = aji =

1, if ||qi − qj|| ≤ Rcom

0, otherwise.
(4.35)

In (4.35), Rcom is the communication radius of the robots. Note that when the virtual
points converge to a rendezvous state, the distance from a robot to its virtual point will
be the same as the distance from a robot to the reference point, as the rendezvous point is
exactly the reference point.

Note also that (4.33) and (4.34) are direct applications of common consensus algorithms
Ren & Atkins (2007), Ren (2007). In (4.33) and (4.34) we control virtual point positions
to guide the virtual points (z) associated with all the robots to the same position.

Until now, nothing has been stated in regard to how the distances between the virtual
points and the robots should be defined. In the next section we propose a heuristic to
choose those distances for each robot dynamically to lead the system to radial segregation.

4.3.5 Radius Heuristics

To assign the virtual point radius ri to each robot we propose a heuristic that dynamically
changes robot’s ri when a robot is able to exchange information with other robots that
are within the communication radius Rcom. In Scenario 1 robots exchange information
through the underlying fixed communication topology (to be able to compute (4.33)) and
also exchange information with other robots within the communication radius Rcom (to be
able to process Algorithm 4.2). In Scenario 2 robots only exchange information with other
robots within the communication radius Rcom. The drawback for Scenario 2 is that all the
robots must know a common reference point. This is not a strong limitation since we can
always think of a two-stage solution in which in the first stage a preliminary consensus
protocol might be processed while the robots stay still in their initial positions to define
the reference point as long as robots start in a connected topology. The second stage is
then exactly the proposed approach for Scenario 2. In Algorithm 4.2 we show the local
control algorithm for robot i in which it is possible to see the heuristics to change the
radius.

Each robot can perceive other robots within its communication radius and broadcast
its own hi, ri and hdi (line 3). In Algorithm 4.2, hdi is used to store information about robots
from other groups and then broadcast this information to other robots. The robots also
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Algorithm 4.2 Control Algorithm for robot i.
1: Initialize hdi = 0, ri = d;
2: while Active do
3: Broadcast hi, ri, hdi
4: for all qj such that ‖qj − qi‖ < c do
5: Receive hj, rj, hdj
6: if hi > hj then . Robot i belongs to a hierarchy higher group in comparison to robot j.
7: if rj >= ri then
8: hdi ← 0
9: ri ← rj + d

10: end if
11: end if
12: if hi = hj then . Robots i and j are from the same group.
13: if rj > ri then
14: hdi ← 0
15: ri ← rj
16: end if
17: end if
18: if hj > hi then . Robot i saving information.
19: if rj > ri then
20: hdi ← hdi ∪ {(hj, rj)}
21: end if
22: end if
23: if ∃(hk, rk) ∈ hdj such that hi > hk and ri ≤ rk then . Robot i analyzing received

information
24: hdi ← 0
25: ri ← rk + d

26: end if
27: end for
28: Move according to control law (4.40);
29: end while

receive the broadcasted hj, rj and hdj from all the other robots within its communication
radius (line 5).

In Algorithm 4.2, lines 6-11, when a robot i meets a robot j of a group that is lower in
the hierarchy than the group of robot i (hi > hj), with a radius that is greater or equal
to ri, robot i change its radius to rj plus a fixed parameter d. This means that robot i,
of the group higher in the hierarchy will move away from the “rendezvous point” thus
segregating from the robot j, of the group lower in the hierarchy.

In Algorithm 4.2, lines 12-17, when a robot i meets a robot j from the same group,
robot i receives the value of the radius of robot j if this value is greater than the one robot
i already has. This means that robot j had met another robot from another group that is
lower in the hierarchy and is now broadcasting this information to robot i.

Due to the local nature of the approach, there can be situations where robots are
“stuck” in the same radius with robots of groups with lower order. These situations occur
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when robots converged to the “wrong” circle but do not have communication with other
robots in this circle. To solve these situations, whenever a robot i communicates with a
robot j of a group higher in the hierarchy that is more external in relation to the reference
point, robot i stores robot’s j hierarchy (hj) and radius (rj) in a list (lines 18-22).

When a robot i receives the broadcasted list from robot j, robot i analyzes the list to
see if robot j has information of a robot k that is from a group lower in the hierarchy
than robot’s i group (hi > hk). If yes and the radius of robot k is greater or equal than the
radius of robot i (rk ≥ ri) then robot’s i radius should increase (lines 23-27). Informally, it
works like one robot told the other: I have seen a robot with a group hierarchy smaller
than yours with a radius greater or equal to the radius that you have, then you should
increase your radius. This exchange of information can be better visualized in the video
presented in https://youtu.be/fohz_5DRmbI.

To guarantee that the robots that are “stuck” have meetings with other robots, we
make all robots rotate around the reference point with a polar angular velocity that
depends on its radius ri. Therefore, as robots rotate with different angular velocities, they
will eventually meet other robots.

When robots are rotating, the robots from an external radius will eventually exchange
information with robots of immediate internal radius as long as some conditions are met,
as shown next. The constant d regulates the distances between groups and must be such
that:

d < 0.5Rcom. (4.36)

Equation (4.36) guarantees that sometimes robots have connections with at least one
robot of an internal group (if an internal group exists). Given the initial condition ri = d,
if an internal group does not exist, equation (4.36) guarantees that robots are able to
communicate with at least one other robot of the system when reaching the circle of radius
d as exemplified in Figure 4.7.

Figure 4.7 shows a red robot and a blue robot. This figure captures the moment when
two robots (a blue and a red) had converged to the first circle (ri = d ∀i) and are meeting
for the first time. After the blue robot communicates with the red, the blue robot would
increase its radius (line 9) assuming the position of the group of the blue robot in the
hierarchy is greater than the position of the group of the red robot. After updating its
radius the robot moves according to the control law (4.40).

Now, to control the rotation of the robots around the reference point and to control
the distribution of robots within the “desired radius” of its own group we define an angle
controller as shown next.

https://youtu.be/fohz_5DRmbI
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Figure 4.7: Example of constant d that satisfies (4.36).

4.3.6 Angle Control

It is preferable that robots of the same group distribute themselves uniformly along the
virtual circle which is centered where the virtual points rendezvous, although it is not
a requirement in the definition of the problem. Thus, we propose a controller for the
dynamics of the angle θi, as follows

θ̈i = ũi = kpθ̄i + kd
˙̄θi + kβ(ωdi − θ̇i), (4.37)

in which kp, kd and kβ are positive gains. We also have that

ωdi = kω/ri, (4.38)

is the desired angular speed, in which kω is a gain that regulates the fixed tangential speed
and is the same for all robots of the system. Each robot will move locally to the mean
angle in relation to its left and its right neighbors, as in Gonçalves et al. (2011):

θ̄i =
Leftθi +Right θi − 2π

2 (4.39)

in which Leftθi = argminθ̃j∈Ω′
j
{θ̃j} and Rightθi = argmaxθ̃j∈Ω′

j
{θ̃j}. The set Ω is: Ω =

{⋃N

i=1 θi
}

and Ω′i = Ω \ θi is the set containing the angular positions, of all robots of the same group
of robot i, except the angle of robot i. We also have that θ̃j is the measure of θj taken
with respect to θi, i.e. θ̃i = 0.

Figure 4.8 shows an example of robots of the same group and the left and right
neighbors of a robot.

The fixed angular speed (ωdi ) is always dependent on the robot radius ri. The angular
velocity is responsible for making robots eventually meet other robots if (4.36) is respected.
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Figure 4.8: Example of right and left neighbors of a robot.

4.3.7 The Complete Control Law

We have proposed controllers for three different dynamics:

1. Consensus algorithm to control virtual point positions and velocities (Section 4.3.4);

2. Radius heuristics to dynamically set different radius for different groups (Section
4.3.5);

3. Angle controller to distribute robots of the same group (Section 4.3.6).

By combining those controllers, we can now define the complete control that will guide
the movement of each robot. First we use the definition (4.37) and the heuristics described
in Algorithm 4.2 to completely define (4.31). Then we use a consensus protocol ((4.33)
or (4.34)) to control the dynamics (4.32). Finally, composing (4.32) and (4.31) we define
(4.30) and we can move the robots given by the dynamics of (4.1). Thus, each robot will
be guided by the control law

ui = ûi −

−ri(ũi sin θi + θ̇i
2 cos θi)

ri(ũi cos θi − θ̇i
2 sin θi)

 , (4.40)

in which ûi will be either given by (4.33) or (4.34) depending on the considered scenario.

4.3.8 Controlled System Analysis

Theorem 3. Given the following assumptions:

(i) Individual robots are governed by the dynamics in (4.1) with communication radius
Rcom and constant parameter d such that d < 0.5c;

(ii) Groups and a binary relation between groups are defined in such a way that a strictly
totally ordered set of groups is induced;

(iii) Each robot i is able to compute if the order of its group is greater, equal, or less than
the order of the group of any other robot j according to the predefined binary relation
when the information about the group to which robot j belongs is made available.
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Then, by applying the Algorithm 4.2 in the control of each individual robot, it is
guaranteed that the multi-robot system will converge to a radial segregation state as
defined in Section 4.3.1.

Proof. From facts (ii) and (iii) we can assume that Algorithm 4.2 can execute as all the
comparisons can be properly computed.

In Algorithm 4.2 the motion of the robots is governed by (4.40). From (4.1) and (4.30)
it is clear that the virtual points are driven by (4.32). In (4.32), ûi is determined according
to the well-known consensus protocols in (4.33) or (4.34) which leads to the rendezvous of
the virtual points. Given this fact, in order to show radial segregation we need to show
that the radius ri of each robot i converges to a given value which is the same value of the
radius for robots of the same group and is a different value when compared to the radius
of robots of other groups. We follow to show this with a similar procedure as in the proof
of the controller of Section 4.2.

The rest of the proof employs induction, we first show that the first group will converge
to the circle centered at the rendezvous point with radius given by d. Then, we proceed to
show that the other groups will converge to circles also centered at the rendezvous point
but with radius that increases accordingly to its group order in the group hierarchy.

According to Algorithm 4.2, all the robots start with ri = d and the only possible
changes in the radius implies that ri = λd, where λ ∈ N∗. The changes can only occur
when robots meet within a radius Rcom, which is the same for every robot. Moreover,
a radius never decreases, it might only increase in case robot i receives the information
about the existence of another robot j of a different group so that hi > hj and ri ≤ rj or
another robot j of the same group so that rj > ri. As the set of groups is a strictly totally
ordered set, and the changes are given by ri = rj + d for hi > hj or ri = rj for hi = hj it is
guaranteed that the radius of the robots of the group which is the least element of the set,
i.e. h1 < hj ∀j, never changes, i.e., ri = d which implies in the convergence to the circle
centered at the rendezvous point with radius given by d.

Now consider the hypothesis: all the robots of group 1, 2, ..., k, where h(N1) < h(N2) <
... < h(Nk), have converged to the corresponding radius rN1 = d, rN2 = 2d, ..., rNk = kd.
According to Algorithm 4.2 and the strict total order it is impossible to have a change
in the radius of a robot in group Nk+1 when meeting robots in groups Nk+2, Nk+3, ..., NM

as h(Nk+1) < h(Nk+2) < h(Nk+3) < ... < h(NM). From this and the initial conditions,
ri = d ∀i, we can conclude that the radius of group Nk+1 must converge to rk+1 = λd where
λ ∈ {1, 2, 3, ..., k + 1}.

We have that d < 0.5c and the desired polar angular velocity ωdi given by (4.38) is
so that robots moving at circles with different radius will move with different angular
velocities. Thus, it is guaranteed that robots at the circle with ri = λd receive information
from the other robots at consecutive circles, i.e. rj = (λ + 1)d as they meet and share
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information periodically in finite time while they move in these circles. Moreover, in the
first circle the robots have also access to the information from robots at the same circle
(fact (i)). Thus, given the scheme of storing and broadcasting information of robots at
consecutive circles in Algorithm 4.2 and given also the hypothesis of convergence of groups
N1, ..., Nk we can guarantee that a robot from group Nk+1 will always receive information
about the existence of other robots at the same circle and the corresponding value h(Nl)
for comparison when ri = λd with λ ∈ {1, 2, ..., k + 1}. From this we can conclude that it
is impossible for a robot of group Nk+1 to converge to any circle of radius ri = λd with
λ ∈ 1, ..., k. According to Algorithm 4.2, being aware of the other robots already in their
correct circle implies in the increment of the radius of the robots of group Nk+1. Therefore,
the only possible circle for convergence is the one with ri = (k + 1)d.

By induction, we can conclude that each robot i of group Nl will converge to ri = ld, ∀i, ∀l.
Thus, segregation will always be achieved.

We also have proposed an angle controller to distribute robots of the same group
uniformly, although it is desirable to have this feature, in this section it is not a requirement
of the segregation problem. As the angle controller only changes robots angles based on
the proximity to other robots and virtual points remain unaltered, it does not interfere
with the proof of Theorem 3.



5
Simulations and Experiments

In this chapter we show all the simulations and experiments related to the controllers
presented in Chapters 3 and 4. This chapter is divided into two sections. In Section 5.1,
simulations and experiments for the controllers based on abstractions (Chapter 3) are
shown and discussed. In Section 5.2, simulations and experiments for the controllers based
on consensus (Chapter 4) are shown and discussed.

5.1 Abstraction Based Segregation

In this section we present simulations and experiments for two different controllers that
use similar approaches, based on the use of abstractions. In Section 5.1.1 we present
simulation and experiments for segregating groups of robots (related to the methodology
presented in Section 3.2). In Section 5.1.2 we present simulations for segregating groups of
robots in a decentralized manner (related to the methodology presented in Section 3.3).

5.1.1 Segregation

5.1.1.1 Simulations

The proposed controller was first tested using MATLAB (The MathWorks Inc. (2014)) with
our model of double integrator, holonomic robots as defined in Section 3.1. In this section
we present three simulations in MATLAB in a two-dimensional space and two simulations
in a three-dimensional space. Although our approach was presented considering a 2D
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setup, it is straight forward to derive the same equations in 3D, by adding the third
coordinate z. Furthermore, we also discuss in this section some advantages and limitations
of our approach. A video of these simulations together with the experiments of section
5.1.1.2 can be found in https://youtu.be/ox2LFwau1-A.

Figure 5.1: Simulations in MATLAB, each group has Nj = 5 robots. From top to bottom:
(a) M = 4 groups. (b) M = 8 groups. (c) M = 12 groups. From left to right, 4 snapshots
from initial to final iterations. The snapshots also highlight the abstraction size and the
formation of the α-lattices.

In all simulations we assume that all robots start with zero velocity and the robots
were positioned according to a random uniform distribution.

We used the following parameters to define the potential function: r = 1.4d, h = 0.3,
c = 10. Gains k1 and k2 were set to 25 and 0.05, respectively. The desired abstraction size is
used as 90% of the desired distance between groups, σdesj = 0.9d2/(4Nj). Other parameters,
such as the desired distance between groups (d) and the normal distribution of robots
were set in a way that we can better visually evaluate our approach and are dependent on
the number of groups and robots.

The simulations were stopped after segregation, as defined in section 3.1.2, was visually
reached and after the formation of the α-lattices was visually stable.

In the 2D simulations, we always used 5 robots per group, although this is not a
requirement of our approach. We simulate 4, 8 and 12 groups of robots as shown in Figure
5.1. We also show two 3D simulations in Figure 5.2 to exemplify that the approach is
scalable to higher dimensions.

https://youtu.be/ox2LFwau1-A
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Figure 5.2: 3D Simulations in MATLAB. Top: each group has Nj = 5 robots and the
system has 5 groups. Bottom: each group has Nj = 7 and the system has 20 groups. From
left to right, 4 snapshots of initial to final iterations. The snapshots also highlight the
abstraction size (bigger spheres). Snapshots are rotated to help visualization.

Each robot needs information about the position and velocity of all robots of its own
group and of all the robots of neighboring abstractions.

In order to better depict the local property of our controller in comparison to the works
in Santos et al. (2014) and Kumar et al. (2010), Figure 5.3 shows the average number of
groups in neighborhood Bi versus the iterations, that is, the average amount of information
needed for robots from initial time to the time segregation was reached.

No collision was verified in all the simulations, as desired.

Figure 5.3: Information of how many groups each robot needs (average) versus iterations.
e.g. With 8 and 12 groups, after the iteration 6000, each robot needs information of up to
5 neighbor abstractions.
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5.1.1.1.1 Discussions

We can see from the simulations that our approach is different from Kumar’s and Santos’s
works. From Figures 5.1 and 5.2 we see that groups have achieved segregation in various
scenarios ranging from 20 to 140 robots. Note that our initial conditions make the
segregation problem the hardest possible, because we purposely set robots to be very
mixed. If we already have some kind of segregation, the problem becomes much easier to
be solved.

In Figure 5.7 (a) it is possible to see that the intersection area between abstractions in
the 2D and in the 3D simulations converges to zero as desired.

We assume that the initial distribution of robots are such that they are not in a local
minimum. If we imagine a scenario of 6 robots divided in 2 groups of 3 robots each,
arranged alternately at the corners of a regular hexagon, the system would not converge
to segregation because this is a local minimum. This hexagon scenario is an unstable
critical point and even the smallest disturbance in any position of any robot would make
the system reach segregation as desired.

Another drawback of our approach is that, in order to maintain the state of the
abstractions, we rely on a nonlinear programming solver to solve the collision avoidance
minimization problem. It might happen that sometimes it does not find viable solutions.
This would result in collisions between robots.

From Figure 5.3, we can see that as the abstractions begin to separate, the quantity of
information needed for each robot decreases. This can be better seen with 8 and 12 groups,
because with the chosen parameter and 4 groups, the groups remain mostly “connected”.

It is important to note that the collision avoidance algorithm in practice does not
increase the number of information each robot needs, because usually when robots are in
imminent collision they belong to neighboring groups. In theory, the number of information
needed could increase in scenarios with multiple groups involved in imminent collisions,
which would make robots need information to compute the collision avoidance algorithm
from robots that are outside the neighborhood Bi. In (3.46) it is necessary to have
information from all the groups in the connected graph component Ωp.

5.1.1.2 Experiments

The experiments with real robots were performed using the Robotarium testbed described
in Pickem et al. (2017). The testbed uses GRITSBot X robots, which is an improved
version of the GRITSBot presented in Pickem et al. (2017). These robots are differential
drive robots, meaning that they only have two wheels (non-holonomic robots). We use
a feedback linearization Desai et al. (1998) technique so that we can use our controller,
designed for holonomic robots, in differential drive as show in Section A.1.2.

We assumed that every robot has access to the information of its own position and
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Figure 5.4: Sequence of snapshots of the unbalanced experiment with 10 real robots. In
this experiment we purposefully change groups compositions two times after segregation
is achieved. Leftmost snapshot: t=0, initial position. Middle left snapshot: t=40s, first
segregation. Middle right snapshot: t=73s, second segregation. Rightmost snapshot:
t=98s, third segregation. Snapshots also highlight the abstraction size and different
markers for each type of robot.

Figure 5.5: Sequence of snapshots of the experiment with 8 real robots with added inten-
tional errors. Leftmost snapshot: t=0, initial position. Middle left snapshot: t=4s. Middle
right snapshot: t=24s. Rightmost snapshot: t=64s, groups are segregated. Snapshots
also highlight the abstraction size and different markers for each type of robot. Smaller
markers show the position of the robots with added intentional errors.

velocity and the positions and velocities of every robot of its own group and every robot
from neighboring groups.

In the testbed used to perform the experiments, robots do not have sensors. There is an
overhead camera which is used to estimate the poses of all robots in the system. Therefore,
we “emulate” a decentralized controller: each robot receives information (position, velocity,
and group) of every other robot in the system in a centralized way but discards the
information of robots that belong to non-neighbor groups according to the definition of
neighborhood given by the parameter rα (see Section 3.1.3). Since the testbed has a very
reliable pose estimation system, we have also performed experiments in which we have
added intentional errors in the measurement of the position of the robots to verify if the
proposed approach is able to achieve segregation when the localization is not exact.

We performed three experiments: one without the addition of any intentional errors
and two with the addition of intentional errors in the measurements of the position of the
robots. All experiments were processed for 1800 iterations which was equivalent to 98, 64
and 72 seconds for the first, second and third experiments, respectively.

Robots are modeled as a square inscribed in a circle of radius equal to half of the
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Figure 5.6: Sequence of snapshots of the experiment with 13 real robots with added inten-
tional errors. Leftmost snapshot: t=0, initial position. Middle left snapshot: t=9s. Middle
right snapshot: t=34s. Rightmost snapshot: t=72s, groups are segregated. Snapshots
also highlight the abstraction size and different markers for each type of robot. Smaller
markers show the position of the robots with added intentional errors.

Figure 5.7: Evolution of the intersection area related to the simulations of Figures 5.1
and 5.2 and the experiments of Figures 5.4, 5.5 and 5.6. (a) Evolution of the intersection
area of the 2D and 3D simulations. (b) Evolution of the intersection area of the three
experiments with real robots.

diagonal of the square. For the purpose of the proposed methodology the size of the robots
is considered to be the size of the circles.

The solution of the problems of minimization of equation (3.46) are obtained with the
help of the fmincon function of MATLAB, with the interior-point optimization algorithm.

In the first experiment, with unbalanced groups, we used 10 robots divided into 4
groups that change composition during the experiment. With t = 0s, groups N1, N2, N3

and N4 have 3, 3, 2 and 2 robots, respectively. After 700 iterations, groups compositions
are changed to N1 = 2, N2 = 4, N3 = 2 and N4 = 2. Finally, after 1300 iterations, groups
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Figure 5.8: Data plot related to the experiment of Figure 5.4. (a) Evolution of abstractions
size errors. (b) Evolution of the minimal distance between robots.

compositions are changed to N1 = 2, N2 = 2, N3 = 3 and N4 = 3.
In the second and third experiments we added intentional errors in the measurements

acquired from the overhead camera from the Robotarium platform. Each robot computes its
individual control action (3.34) adding intentional errors drawn from a normal distribution
to its own position and to the position of each other neighbor robots at each time step.
The errors have zero mean and standard deviation of 5% and 10% of the area of the
environment for the second and third experiment, respectively. Note that neighbor robots
of robot i are those in the neighborhood Bi, as explained in section 5.1.1.1.

In the second experiment, we used 8 robots divided equally into 4 groups, without
changing groups compositions (M = 4, Nj = 2,∀j).

In the third experiment, we used 13 robots divided into 5 unbalanced groups, without
changing groups compositions (M = 5, Nj = 3 ∀j∈{1,2,3} and Nj = 2 ∀j∈{4,5}

) .
Frames of the first experiment are shown in Figure 5.4, for the second experiment in

Figure 5.5 and for the third experiment in Figure 5.6.
In Figure 5.9 (a) we show the evolution of the abstraction sizes (σ) for the second

experiment. In Figures 5.8 (a) and 5.10 (a) we show the evolution of the abstraction size
errors for the first and third experiments, respectively, as the desired abstraction sizes
(σdes) changes over time or are different depending on the number of robots in the group.
It is possible to see in Figures 5.8 (a), 5.9 (a) and 5.10 (a) that the abstractions converge
to the desired sizes.

In Figures 5.8 (b), 5.9 (b) and 5.10 (b) we show the evolution of the minimal distance
between robots for the first, second and third experiments, respectively.
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Figure 5.9: Data plot related to the experiment of Figure 5.5. (a) Evolution of abstractions
sizes. (b) Evolution of the minimal distance between robots.

We can see in the second, third and fourth frames of Figure 5.4 and in the last frame
of Figures 5.5 and 5.6 that segregation has occurred. We can also see that the system has
reached segregation according to our definition analyzing the evolution of the intersection
area between abstractions (Figure 5.7 (b)).

In Figures 5.8 (b), 5.9 (b) and 5.10 (b) it is possible to see that robots do not collide
and when the collision avoidance algorithm was used, except for some brief moment in
Figure 5.10. In this brief moment, there are some points that indicate erroneously the
presence of collisions between robots. We have ignored those outliers that were in fact
caused by a brief error in the localization of a robot. This brief error in the data can be
confirmed watching the video of this experiment, where no real collisions have occurred
(video can be found in https://youtu.be/ox2LFwau1-A). This example confirms the
robustness of the method against usual errors in real scenarios.

5.1.1.2.1 Discussions

With real robots, the implementation issues of section 3.2.2 were not observed. As real
robots have limited velocities, they do not reach velocities much higher than the mean
velocity of its group. Thus, we chose not to use the velocity dissipation controller described
in section 3.2.2. Therefore, we use the controller of equation (3.34) where the collision
avoidance scheme is only turned on in imminent collision situations.

The experiments were important to validate our controller in real scenarios, where

https://youtu.be/ox2LFwau1-A
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Figure 5.10: Data plot related to the experiment of Figure 5.6. (a) Evolution of abstractions
size errors. (b) Evolution of the minimal distance between robots.

errors due to imperfections are commonly observed. Imperfections such as packet loss
and time delays are usually observed in real world networks. Information from real
sensors, such as the overhead camera, used for localization are subject to noise. These
issues have direct impact in the information actually used by the robots to compute
their control inputs. Furthermore, we can also have imperfections from the unmodeled
dynamics of the differential drive robots and the discretization of the implementation,
given that our controller was originally proposed for double integrator continuous dynamics.
Actuator errors and input saturation may also be a source of degradation in the real system
performance. Finally, differences in the robots such as small differences in motor power,
in the battery charges, in the construction of the robots, etc. may introduce unexpected
behavior. All these imperfections are usually disregarded in computer simulations which
justifies the verification of the method in real robots. In the real experiments performed in
this work we could indeed verify some robustness of the proposed method to errors caused
by real world issues.

In the Robotarium testbed, although errors due to imperfections exist, we can usually
assume that the overhead camera based localization system is quite precise. Therefore, to
show that our controller can be robust even in the presence of more severe errors we have
also performed experiments adding intentional errors to the position of the robots after
receiving those information from the testbed (experiments shown in Figures 5.5 and 5.6).
Those experiments can provide indication that the segregation controller will perform well
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even in other real world environments where errors and imperfections are usually more
expressive.

It is also important to mention that the experiment with unbalanced groups could
attest that the method is robust to the dynamic addition and withdraw of robots from
groups as long as σj 6= 0. In practice, this means that groups should have at least two
robots.

5.1.2 Decentralized Segregation

5.1.2.1 Simulations

Figure 5.11: Sequence of frames from a simulation with 6 robots divided into two groups.
Leftmost frame: Starting positions. Rightmost frame: Groups are segregated.

In all simulations in this section, the parameters of the potential function were defined:
r = 1.4d, h = 0.3 and c = 10. The gains of the individual controller were defined: k1 = 3
and k2 = 5. The integration step used is 0.01 and the numerical integration is solved with
the function ode45, which uses the explicit Runge-Kutta formula of orders 4 and 5. The
size of abstractions in this section is always defined respecting equation (3.29) and the
desired distance between abstraction centers (parameter d) is such that

d = 0.8r, (5.1)

in which r is the radius of communication between robots and also the parameter that
dictates the finite cut-off of the potential function. In all simulations, in this section,
collisions were not considered.

Figure 5.11 shows a simulation with 6 robots divided equally into 2 groups in order
to qualitatively visualize the proposal. This figure shows the communication radius of
a robot (blue robot) and also the graph of communication between robots in the same
group (dotted lines). In this simulation, the radius of communication between robots is
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r = 2.5m, the radius of robots is Rb = 0.1m and the desired distance between the centers
of abstractions is d = 2m.

Other simulations were made in order to analyze the controller with more groups and
robots, Figures 5.12 and 5.13 are related to these simulations. In Figure 5.12, 3 simulations
are shown, with 50, 100 and 150 robots. In all of these simulations, the stopping criteria
was the absence of intersections between abstractions, as defined in Section 3.1.2. The
radii of the robots is Rb = 0.5m and the radius of communication between robots is given
by r = 35m, r = 70m and r = 105m for simulations with 50, 100 and 150, respectively. Note
that we consider the environment to be unlimited.

In the simulations of this section, it was considered that the consensus protocols
would be processed in zero time, as assumed in Section 3.3. Thus, robots estimate the
values needed to define their individual controller, calculate its control action and move
accordingly. In these simulations, the zero-order sampler was as defined in the section
3.3.1 was not used. The use of the zero-order sampler in simulations and with real robots
and the consequences of this use are a suggestion for future work.

Figure 5.13 shows the amount of information required on average for robots from the
initial instant until the instant that segregation was obtained. This figure is related to the
3 experiments in figure 5.12. The reference used in this figure was obtained through the
use of the controller in Section 3.2 with the same initial conditions as the controller in this
section.

All the simulations in this section can be found in a video at https://youtu.be/
Nz4qJlKAgMA. In this video, some other information from each simulation is also shown,
such as the evolution of the average error of the estimators used (see Section 3.3) and the
evolution of the error of the size of the abstractions. The additional information is shown
only in the video and not in the text because it is understood that they are more relevant
accompanied by the movements of the robots and abstractions.

5.1.2.2 Discussions

It can be seen from the simulations found in Figures 5.11 and 5.12 that segregation was
achieved in systems ranging from 6 to 150 robots. From Figure 5.13 and the data about the
required information seen in the video (https://youtu.be/Nz4qJlKAgMA) it is possible
to see that the number of information needed for each robot is very low. This number
reduces on average throughout the entire simulation in relation to the controller described
in the Section 3.2: 29.32% for the simulation with 50 robots, 34.58% for the simulation
with 100 robots and 33.95% for the simulation with 150 robots.

The use of local information is the greatest advantage of this decentralized controller
in relation to all other segregation controllers found in the literature and the controller of
in Section 3.2. Assuming that robots of the same group have connected communication
graphs, the only information required for each robot outside its communication range is a

https://youtu.be/Nz4qJlKAgMA
https://youtu.be/Nz4qJlKAgMA
https://youtu.be/Nz4qJlKAgMA
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Figure 5.12: MATLAB simulations, each robot group has Nj = 10 robots. From top to
bottom: (a) M = 5 groups. (b) M = 10 groups. (c) M = 15 groups. From left to right, 4
frames from the initial iteration to the final iteration.

Figure 5.13: Average information of each group that each robot require per iteration.

limit on the number of robots in its group. In the simulations of this work, we assume that
all robots can estimate this limit. This could be done using another distributed estimator
but it remains as a suggestion for future work. As in the simulations we are assuming that
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the consensus is processed in zero time, the accuracy of this estimate would not make a
difference in the simulations because the robots wait for the consensus to be processed
and their controller will be fully defined and then move.

In this work it was assumed that the communication graph of each group can vary, but
it must always remain connected. This is a strong assumption, if the graph is disconnected
at any time, the entire proposal is invalid. In the simulations, the parameters were
regulated in a way that it was unlikely that the communication graphs would disconnect,
for example, choosing the desired size of the group σdes to be small in relation to the initial
distribution of the robots. This caused the robots to move in the direction in which the
size of their initial abstractions is reduced, thus maintaining the connectivity of the graph.

Note in Figure 5.13 that robots do not need information from the entire system anytime,
unlike the reference (controller in Section 3.2), where in the initial moments all robots
need information from all other robots in the system.

The greatest disadvantage of this controller is that it does not have a convergence proof.
As a result, there may be situations in which segregation is not achieved or the system
is unstable. In all tests there were no situations of this type, as long as group topology
remained connected. In all situations where the system did not converge to segregation,
with disconnected groups, it was enough to increase the radius of communication of robots
for the system to converge to segregation with the same initial conditions.

Note that each robot calculates the artificial forces individually, this means that some-
times some robots are attracted or repelled by different groups and do not move according
to the average of their group as in the controller in Section 3.2. Consequently, robots
move with less cohesion, i.e. robots sometimes “orbit” the centers of their abstractions,
but always maintaining their states.

5.2 Consensus Based Segregation

In this section we present simulations and experiments for controllers that use similar
consensus based approaches to deal with different problems. In Section 5.2.1 we present
simulation and experiments for segregating robots in curves (related to the methodology
presented in Section 4.2). In Section 5.2.2 we present simulations and experiments for
segregating robots radially (related to the methodology presented in Section 4.3).

5.2.1 Segregation in Curves

In this section we present our simulations and experiments with real robots. A video
containing all the simulations and experiments shown in this paper, and some more
examples, can be found in https://youtu.be/JuUn4DIa0-w. The segregation error is
defined as in Santos et al. (2014). First, we compute the convex hull of each group of

https://youtu.be/JuUn4DIa0-w
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Figure 5.14: Mean segregation error for 150 simulations x Iterations (Log scale).

Figure 5.15: Initial and final snapshot of two 3D simulations with robots divided unevenly
into 7 groups. a) Segregation in a line. b) Segregation in a helicoid.

robots using the position of all the robots of each group. The segregation error is then
defined computing the intersection area or volume of all the convex hulls.

5.2.1.1 Simulations

We have executed an extensive series of 2D simulations with three different curves to
analyze our approach quantitatively. We have also performed two 3D simulations to
analyze our approach qualitatively.

In Figure 5.14 we show the simulation results. We have performed 50 simulations
for each curve with a varying number of robots and groups. We randomly picked the
number of robots for each group from the set [1, 2, ..., 10] and we also picked the number
of groups in the system from the same set. We used the curves: A: si = [di 0]T , B:
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Figure 5.16: Experiment with 11 robots divided in 6 groups, Nk = {2, 1, 3, 2, 2, 1}, k ∈
{1, ..., 6}. Circles are the communication radius c.

si = [
√

2di cos(
√

(2di))
√

2di sin(
√

(2di))]T and C: si = [5di cos(2di) 5di sin(di)]T . In
Figure 5.14 we also show an example of the final step of a simulation run in which the
curves A, B and C can be seen. We also use those examples as the legend for Figure 5.14.

In Figure 5.15 we show two examples of 3D simulations. We used the curves si =
[di 0 0]T in 5.15(a) and si = [5 cos(

√
2di) 5 sin(

√
2di) 0.1di]T in 5.15(b).

5.2.1.2 Experiments

In Figure 5.16 we show an experiment with 11 GRITSBot X (Pickem et al., 2017)
using the Robotarium testbed (Pickem et al., 2017). The experiment was conducted
for 78s with parameters: δb = 0.0003, δW = 0.001, γ = 3, c = 0.30m, cout = 0.15m,
cin = 0.11m and robots radii Rb = 0.055m = 0.5cin. The curve used is the spiral
s = [1.4

√
di cos(

√
140di)

√
di sin(

√
140di)]T .

5.2.1.3 Discussions

From Figures 5.16, 5.14 and 5.15 it can be seen that segregation has occurred in several
scenarios, in 2D, 3D and with real robots. In all simulations and experiments there were
no collisions between robots and a fixed connected underlying topology was used.

Our approach is an improvement over the work of Kumar et al. (2010) and Santos
et al. (2014) in the sense that a convergence proof for multiple groups is provided and
segregation for any number of robots and groups is guaranteed. Also, in our approach
robots do not use information of all other robots in the system all the time and do not
have problems with unbalanced groups as long as the considerations about the relation
between c and cout is adequate, as explained in Section 4.2.7.3.

Note that our approach is robust to adding and subtracting robots to the system, as the
segregation distance bi will potentially increase to guarantee that groups are segregated.

5.2.2 Radial Segregation

We have tested the proposed controller with extensive simulations using the double
integrator dynamics (4.1) and experiments with real robots using the Robotarium platform
(Pickem et al., 2017). We have tested the controller for both Scenarios 1 and 2. In this
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Figure 5.17: Simulations in MATLAB. From top to bottom: (a) N = 24 robots divided
equally in M = 8 groups. (b) N = 100 robots divided equally in M = 10 groups. From left
to right, 3 snapshots of initial to final iterations. In the middle snapshot of each simulation
we highlight the fixed underlying topology. In the last snapshot of each simulation we
highlight in dashed lines the circles of the groups after segregation is reached, and we also
“connect” with black lines every robot that are within the communication radius in that
instant.

section we present two simulation for Scenario 1 to analyze the proposal qualitatively. For
Scenario 2 we present one of our trials of an experiment with real robots, and we also
present data of 90 simulations to evaluate the proposal quantitatively. In addition, we
briefly discuss the results.

A video with the simulations and the experiment can be found at: https://youtu.
be/yLZyN9MpC18. In this video we show the evolution of the mean of information needed
for each robot and the evolution of the segregation error (according to Groß et al. (2009))
and the uniformity error (according to Wilson et al. (2004)) related to the simulations of
Figure 5.17. In the video we also show the experiment with real robots along with the
evolution of the segregation error of the experiment.

The segregation error is defined as in Groß et al. (2009): the segregation error for the
entire swarm is obtained by summing up the segregation errors for all possible pairs of
robots, scaled from 0 (all robots in segregated order) to 1 (zero robots in the segregated
order).

https://youtu.be/yLZyN9MpC18
https://youtu.be/yLZyN9MpC18
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Figure 5.18: Mean segregation error of 90 simulations with a varying number of robots
and groups for Scenario 2.

Figure 5.19: Experiment in Robotarium (Pickem et al., 2017). Robots of the same group
have the same color and form markers. Dashed circles represent the virtual circles for
each group. Leftmost snapshot: initial arbitrary positioned robots. Rightmost snapshot:
robots are radially segregated.

5.2.2.1 Simulations

In all simulations we assume that all robots start with zero velocity and the robots were
positioned according to a normal distribution.

In both Scenarios the parameters were: c = 5m, d = 0.5c− ε, ε = 0.1, γ = 5, kp = 0.01,
kd = 0.01, kω = 0.1, kβ = 10 in which ε is set to guarantee (4.36). Each simulation was
performed for 50000 iterations with integration step equal to 0.02.

In Figure 5.17 we show two simulations for Scenario 1 that can be visually analyzed,
one simulation with 24 robots and the other one with 100 robots. The underlying topology
was arbitrarily set and is fixed and connected in each simulation.

In Scenario 2 we performed 90 simulations varying the number of robots and groups
ranging from two robots to 100 robots divided in two to 10 groups. Starting with two
groups and one robot per group up to 10 robots and then increasing the number of groups:
3, 4, ..., 10 groups, therefore, the last simulation has 10 groups and 10 robots per group. In
Figure 5.18 each line shows the mean segregation error for 10 simulations, from one to 10
robots per group and the number of groups is depicted in the legend.
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5.2.2.2 Experiment

In Figure 5.19 we show an experiment with 15 GRITSBot X (Pickem et al., 2017) divided
equally into 5 groups. The experiment was conducted for 236 seconds and segregation
state was first reached around 100 seconds after the start. Parameters of the experiment:
c = 0.48, d = 0.5c − ε, ε = 0.05, γ = 8, kp = 0.001, kd = 0.005, kω = 0.03, kβ = 0.1. A local
collision avoidance algorithm already implemented in the Robotarium platform (Pickem
et al., 2017) was used, the algorithm is based on barriers certificates (Ames et al., 2014).
Robots have diameter of Rd = 0.11m and the collision avoidance algorithm was used
whenever two robots were less than 0.33m from each other.

5.2.2.3 Discussions

After analyzing Figures 5.17, 5.18 and 5.19 we can see that in all cases robots have reached
radial segregation. It can also be seen in Figure 5.17 that robots do not need information
from all robots of the system to reach segregation. In average robots needed information
of 10.43% and 24.20% of robots in the system, for the simulation in Figures 5.17 (a) and
5.17 (b), respectively.

Note in Figure 5.17 that robots can sometimes be unevenly distributed on the virtual
circle of its group due to the local nature of the approach. Depending on the system’s initial
conditions some robots may never meet robots from the same group and consequently
never reach perfect distribution. Nonetheless, they always reach the desired radius of their
group. This would still be a radially segregated system according to our definition of the
problem. As the size of groups increase they are more likely to reach uniform distribution.



6
Conclusions

In this work we have proposed several controllers for segregating groups of robots. All the
controllers were developed for robots modeled as double integrators and in all controllers
robots do not need information about all the system all the time. This fact alone shows
that all the controllers presented in this document are improvements over the segregation
controllers found in literature.

We have presented controllers to deal with the problem of radially segregating groups
of robots and to deal with the problem of segregating groups of robots into clusters. All
in all, five different controllers to segregate groups of robots are shown. Table 6.1 presents
a summary of those controllers.

In Section 3.2 it was presented a controller that uses abstractions to represent each
group of robots and an artificial potential function was used to separate groups. This
controller requires that robots have the knowledge of the states of the centers of abstractions
of neighboring groups (given by the parameter r). Also, robots need the knowledge of
the states of its own abstraction, one way to acquire this is to have the knowledge of the
states of all other robots on its own group. Moreover, an integrated collision avoidance
algorithm was proposed, which allows robots to segregate maintaining the abstractions
formation. This approach is an improvement over the works of Kumar et al. (2010) and
Santos et al. (2014) because it does not require information about all the system all the
time. The approach is also an improvement over the works of Edwards et al. (2016) and
Inácio et al. (2019) because we present a convergence proof with an integrated collision
avoidance while Edwards et al. (2016) present a convergence proof for robots modeled as
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single integrators without a collision avoidance and Inácio et al. (2019) does not present a
convergence proof.

Table 6.1: Summary of the controllers shown in this document.
In this
document Published Main Ideas Information Required Collision Avoidance Scenario Dimension Proof

Section 4.2 RAS 2019 (Ferreira Filho & Pimenta, 2019a)
Abstraction Based;
Without Estimators;
Potential Function;

The center of all the
abstractions inside r;
All robots of its own group;

Integrated - 2D and 3D Convergence

Section 4.2 -
Abstraction Based;
With Estimators;
Potential Function;

Nearby Robots;
All robots of its own group; No - 2D and 3D No

Section 5.2 ICRA 2020 (Ferreira Filho & Pimenta, 2020)

Consensus Based;
Segregation in Curves;
Formation Control;
Heuristics;

The same open curve;
Robots inside c;
Fixed connected Topology

Integrated - 2D and 3D Convergence

Section 5.3 CDC 2019 (Ferreira Filho & Pimenta, 2019b)

Consensus Based;
Radial Segregation;
Virtual Points;
Rendezvous;
Heuristics

Robots inside c;
Fixed connected Topology No 1 2D only Convergence

Section 5.3 CDC 2019 (Ferreira Filho & Pimenta, 2019b)

Consensus Based;
Radial Segregation;
Virtual Points;
Rendezvous;
Heuristics

Robots inside c;
A fixed reference point No 2 2D only Convergence

In Section 3.3 another controller based on the use of abstractions and potential artificial
functions was proposed. With this controller, robots use estimators to acquire the states
of its own abstraction. Furthermore, each robot relies on local information to attract
or repel robots from other abstractions, when they are close enough. This approach
has improvements over the approach of Section 3.2 in the sense that robots require less
information to reach a segregated state, although this was the only approach of this work
that does not have a convergence proof and may not reach segregation in real scenarios
where robots have low computation power and communications have delays.

Section 4.2 presents a controller to segregate groups of robots in which the main idea is
the use of a consensus algorithm to guide the movements of the robots. In this controller,
all the robots must have the knowledge of the same open curve. We consider that robots
can communicate through a fixed underlying topology and also when they are within a
certain distance. We propose a heuristic to compute the distance between the groups,
i.e. the distance from the beginning of the curve, which makes groups segregate. The
approach is local in the sense that each robot only needs communication with part of the
system to converge to a segregated state. This approach has improvements over the works
on segregation found in literature, as it combines a convergence proof with a reduction on
the amount of required information required per robot.

Section 4.3 presents two controllers: one in which robots require a fixed underlying
communication topology (Scenario 1 ) and another one in which robots only require the
knowledge of the same fixed point (Scenario 2 ). This approach deals with a slightly
different segregation problem: the radial segregation. This approach, considering any of
the scenarios, is an improvement over all the works on radial segregation found in literature
in the sense that none of them present a convergence proof to segregation.

For all the controllers presented in this document simulations and experiments validated
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the results, except the controller of section 3.3, in which only simulations were shown.

6.1 Future Work

In this section, proposals for continuity of work for the controllers shown in this document
will be suggested.

6.1.1 Abstraction Based Segregation

In Chapter 3, two controllers were shown to solve the problem of segregation in swarms
of robots. The first controller (Section 3.2) might have some decentralization features at
times, but this can not be guaranteed in every scenario. The second controller (Section
3.3) is really decentralized, i.e. robots do not use global information. The main proposal
for continuing the work Chapter 3 is to obtain a formal proof of convergence for the
decentralized controller, since without a formal proof there is no guarantee that the system
will converge to segregation as desired.

As estimators have been added, it is intended to use the Lyapunov stability theory to
extend the convergence proof of the first controller (see Section 3.2.3). It is intended to
have the formation of different α-lattices, in which each node can be in a limited region
instead of just one point. It is also intended to modify the desired size of the abstractions
(σdes), so that it is possible to define this size in a limited region, instead of being a fixed
size. In this way it is intended to study techniques that show the convergence of the system
for segregation even with these different formations. It is intended to use the parameter d,
that separates the center of groups, to regulate the size of these regions and thus try to
prove the convergence for segregation of the second controller.

Another idea that might be explored is the use of the discrete time framework with
our consensus estimators in order to try to mathematically prove the convergence of our
controller to segregation.

We also want to design a new controller to avoid collisions, that uses only local
information, based on the controller shown in Section 3.2.1. The initial idea is to create a
null space only with the neighboring robots and that these neighbors maintain the state
of the abstraction, while the collision is avoided by a robot.

It is also intended to explore another idea in the sense that the states of abstractions
do not necessarily need to be maintained while avoiding a collision. They can be changed,
as long as it is in the “right” direction. That is, it is always desired that the abstractions
keep approaching the desired size (σdes) and moving away from the centers of other groups.
This would mean that if a robot changes its trajectory to avoid a collision, and that this
trajectory makes the abstraction closer to its “desired state”, then the other robots in this
group would not need to move to maintain the state of the abstraction.
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It is also a proposal of future work, to improve the local properties of this controller.
The controller shown in Section 3.3 requires the robots to have some information a priori:
the number of robots in its group and the adjacency matrix of this group (which robot
communicates with which other). We want to further reduce what information robots
need to achieve segregation. One possible idea to be followed is to add new estimators, so
that robots can acquire these information individually.

6.1.1.1 Controller Robustness

Another proposal for future work consists of giving robustness to the decentralized controller.
In this controller, the states of abstractions are estimated in a decentralized manner, and
these estimated values may contain uncertainties. Uncertainties can be due to practical
aspects such as failures/delays in communication between robots or even theoretical aspects
such as the delay in the convergence of the estimate when using the consensus protocol.

A possible idea is to model all uncertainties so that it is possible to obtain a model of
robots of the type

q̈ = u+ ∆u, (6.1)

in which ∆u is a sum of all these uncertainties.
Thus, we want to investigate robust control techniques and propose a u controller that

is robust to these uncertainties without increasing the amount of information needed by
the robots and that still takes the system to a so-called segregated state.

6.1.2 Consensus Based Segregation

In Chapter 4 we have presented two novel decentralized approaches to segregate swarms of
heterogeneous robots. We have shown proof of convergence for both approaches, however,
we only considered collision avoidance in the first approach (Section 4.2). Furthermore,
only the first approach is scalable to a higher dimension. The radial segregation controller
may not be directly used in a 3D Euclidean space because the virtual points are modeled
according to polar coordinates. To extend to 3D, one should formulate virtual points
with spherical coordinates. Formulating as spherical coordinates, a problem arises: robots
rotating in a 3D sphere would not have so many meetings as they have in 2D. Therefore,
one must formulate a controller in which robots of a group rotate in a way that they can
eventually “see” robots in the immediately more intern sphere. As future work, we intend
to extend the controllers for radial segregation in order to have an integrated collision
avoidance and the extension to the 3D case.

Another idea to future work is to use abstractions similar to the ones proposed in
Chapter 3 to represent the groups and then segregate the abstractions radially.

Moreover, we intend to explore strategies to segregate groups of robots in which even
less information is used. In the curve segregation controller, one might explore the idea of
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acquiring the knowledge of a curve in a decentralized way. In this case, robots would have
to reach a consensus in the parameters of the curve they should converge to.

Other ideas that might be interesting exploring is to use auction or gossip algorithms
so that robots are able to decide the group hierarchy in a decentralized manner. In this
case one would eliminate the requirement of the existence of a global group hierarchy.

Finally, in the controller to segregate robots in curves, we have a constraint regarding
the number of robots per group. Robots of a group must fit in a region so that we can
guarantee that the communication between robots will be such that eventually all robots
will have enough meetings to gather the information about where is the true position
of its group in the hierarchy. This is a restrictive constraint that may limit how many
robots each group can have. As future work, we intend to explore new ways to prove the
convergence of the controller in which this constraint is not required.
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A
Appendix

A.1 Fundamental Principles

In this Appendix, we review some fundamental principles that were useful in the method-
ologies shown in Chapters 3 and 4.

A.1.1 Graph Theory

In this work we used graph theory concepts, in the context of avoiding collisions between
robots and in the context of the use of consensus protocols. The following are the basic
concepts in graph theory.

A graph is defined by:
G = (V , E), (A.1)

with V being the vertex or nodes set and E being the edge set, which connect the vertices.
Another graph:

G′ = (V ′, E ′) (A.2)

is a subgraph of G = (V , E) if V ′ ⊂ V and E ′ ⊂ E (Bollobás, 1998).
A path is a sequence of vertices where there are edges between each of the consecutive

vertices in the sequence. A graph or subgraph is connected if any two of its vertices can
be connected by a path. If there are two vertices that cannot be connected then the graph
or subgraph is disconnected. The connected components of a graph are the maximal
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connected subgraphs of this graph, i.e. are subgraphs that are not contained in other
connected subgraphs. Figure A.1 shows an example of a connected graph and an example
of a disconnected graph.

Figure A.1: Example of connected and disconnected graph. Two graphs: G1 and G2.
Graph G1 is connected and graph G2 is disconnected.

From a graph one can construct an adjacency matrix A. The adjacency matrix A = [ākl],
associated with a graph G is a square matrix of size N × N , where N is the number of
graph nodes, and k and l range from 1 to N . The adjacency matrix elements (ākl) are
weights that indicate whether there is a link between agents k and l.

In this work we will consider only undirected graphs, those where the adjacency matrix
A is symmetric. In this work we will also always consider graphs with weight ākl = 1
if there is a connection between agents k and l and weight ākl = 0 if there is no such
connection.

The Laplacian matrix of a graph can be defined as

L = D −A, (A.3)

in which D is a diagonal matrix which contains information about the number of edges
attached to each vertex, for graph G. The diagonal elements of D are given by

dkk =
N∑
l=1

ākl. (A.4)

If G is connected, the second smallest eigenvalue of L is always real and positive (λ2> 0)
(Olfati-Saber & Murray, 2004). This second smallest eigenvalue is the so-called algebraic
connectivity of the graph G.

Note that in this work graph theory is used at two different moments: in the context
of collisions between robots and in the context of communication between robots.

In Section 3.2 a collision graph is defined, which is used in avoiding collisions between
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robots and does not depend on the communication radius between robots, which is not
used in Section 3.2. In the Section 3.3 and in Chapter 4 other controllers are defined,
in those controllers the collision graph is not used as collisions are avoided in another
manner, but a robot communication graph is defined, which defines the neighborhood of
each robot.

A.1.2 Other Robot Models

In this document, all the controllers are designed for robots with the double integrator
dynamics model, as in Kumar et al. (2010) and Santos et al. (2014):

q̇ = v, v̇ = u, (A.5)

in which q, v and u, are the position, velocity and control input vectors, respectively.
Nonetheless, the same controllers can be used considering other models such as the
differential drive model in a 2D plane. A feedback linearization (Khalil, 2014) technique
can be used in order to apply the controller designed for double integrator dynamics model
in robots with the differential drive dynamics model. For the sake of simplicity, in this
section we omit robot and group indexes. Consider the differential drive dynamics model


ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = w, ssss

(A.6)

in which θ and w are the rotation angle and rotational velocity, respectively. We are
assuming actuation in rotational and translation acceleration, therefore differentiating ẋ
and ẏ in (A.6) we have that

ẍ = a cos θ − w v sin θ

ÿ = a sin θ + w v cos θ
, (A.7)

in which a = v̇ is the linear acceleration of the robot. Choosing a point (xa = dacosθ+x, ya =
dasinθ + y) at a distance da of the center of the robot we haveẋa = ẋ− da w sin θ

ẏa = ẏ + da w cos θ
(A.8)

and ẍa = ẍ− da Υ sin θ − da w2 cos θ
ÿa = ÿ + da Υ cos θ − da w2 sin θ

, (A.9)

where Υ = ω̇ is the angular acceleration.
Figure A.2 shows a schematic illustrating the chosen point (xa, ya), as well as the robot’s
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linear velocity (v), the rotation angle (θ) and the rotation speed (ω).

Figure A.2: Scheme illustrating the control of a robot with differential drive dynamics.

Substituting (A.7) in (A.9) and considering its matrix form, we have
ẍa
ÿa

 =

cos θ −da sin θ

sin θ da cos θ


︸ ︷︷ ︸

A

a
Υ


︸ ︷︷ ︸
B

+C (A.10)

where

C =

−w v sin θ − da w2 cos θ
w v cos θ − da w2 sin θ

 . (A.11)

Thus, a
Υ

 =
[
A
]−1 {

−C + uv

}
(A.12)

in which the control input uv is the same that would be used to drive a punctual robot
positioned at the point da with the double integrator dynamics model:ẍa

ÿa

 = uv. (A.13)

Therefore, with this feedback linearization technique we can use the controllers proposed
in this thesis in differential drive robots. Similar approaches can be devised for robots
with different dynamics.
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