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a b s t r a c t

The focus of this study is to design individual control laws that segregate multiple groups of mobile
heterogeneous robots. Our approach is based on the use of abstractions to represent each group of
robots and an artificial potential function to segregate the groups. Different from other works in the
literature, we prove that with our controller the system will always converge to a state where robots
of the same group will be together while separated from robots of different groups. We also propose
a collision avoidance scheme which does not interfere in the segregation controller. Furthermore, our
controller has a local property, meaning that the controller might not require global information of the
whole swarm to converge to the segregated state. The approach is validated with simulations varying
the number of robots and groups and experiments with real robots.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Robotic swarms are systems formed of a large number of
relatively simple robots that interact to each other to solve a task
that is beyond each robot individual capabilities [1].

Robot swarms are commonly inspired by nature; in the way
birds fly in formation or in the way fish schools aggregate to
accomplish a common goal. In a robot swarm, usually each robot
is a simpler one if compared with state of the art robots. That
is because applications with robot swarms are focused on what
a swarm can do as a group rather than in what each robot can
accomplish individually. Furthermore, one of the most important
characteristics of a swarm of robots is its intrinsic tolerance to
individual robot failures, since the global effect of a few damaged
robots is usually attenuated by the large number of robots in the
swarm. Those systems are controlled via local control laws and
usually have limited communication and sensing capabilities due
to restrictions of hardware.

Some researchers have been able to build real highly scalable
swarms. In [2] a swarm of 100 real robots is used and in [3], for
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the first time, a swarm of 1000 real robots is presented. In [4] an
operational system is designed for miniature robots with limited
on-board resources, similar to the ones in [2] and [3].

An interesting application of a robot swarm is shown in [5],
where a swarm formed of floating boats is connected to form
a bridge. In [6] a swarm of boats is used to manipulate a float-
ing object. In [7] a swarm autonomously construct a protective
barrier. Other previously considered applications are perimeter
surveillance [8], spill detection [9], image capturing for entertain-
ment [10], target enclosure [11] and trapping [12], interaction
with humans [13–15] and manipulation of objects [16]. There
are many real world applications that can make use of robotic
swarms, most of these applications are still in research phase.
One can think of a robotic swarm locating victims of a natural
disaster in unsafe scenarios, or, in the field of bio-medical engi-
neering, several robots inside a patient checking the functioning
of internal organs.

Although most swarm applications are still conceptual, it is
possible to see some real world applications emerging nowadays.
Two examples are the Kiva robots at Amazon’s warehouse that
are used to sort delivery packages [17,18] and Intel’s drone light
show that are used for entertainment, as in the 2017 Superbowl
halftime show [19]. One can think of situations where it would
be useful in both applications to have heterogeneous robots.
Heterogeneous robot swarms are those formed of different types
of robots, these differences can be in the available sensors and/or
actuators, locomotion capabilities or even in the role to be played
when performing a task. Generally, if the global task can be
decomposed into smaller sub-tasks, it is beneficial for the sys-
tem’s performance to have teams of heterogeneous robots [20].
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In Amazon’s warehouse robots could have different payloads and
Intel’s drones could have different light effects. We can imagine
that in these scenarios one could wish to assign different tasks
to different types of robots. Depending on the task, the robots
of the same type might have to exchange information and take
decisions together autonomously. Thus, in order to have real
autonomous systems and to guarantee good communication per-
formance among the agents it seems to be interesting to endow
such heterogeneous swarms with the ability to autonomously
segregate, grouping robots of the same type while staying apart
from robots of other types.

Swarm robotics is a recent field of study with several interest-
ing problems to be addressed in order to allow its massive use in
real world. One of these problems is this so-called swarm segre-
gation. As described in the last paragraph, this problem appears
whenever it is necessary to separate a swarm of heterogeneous
robots into different groups composed of robots of the same type.
To solve this problem one should formulate individual control
laws to make all the robots of the same type group together while
maintaining segregation from robots of different types.

As an example of a more practical application of heteroge-
neous swarms and segregation algorithm, one can think of the
use of these systems in real world surveillance tasks. We can
imagine a swarm composed of heterogeneous drones: some with
good surveillance equipment (cameras, sensors, etc.), some with
worse sensors but better battery autonomy, some with hardware
suitable to communicate with the authorities at longer distances,
etc. Imagine that two groups of perpetrators are identified by
the robots and have to be monitored by these robots to help
the authorities. Suppose the perpetrators are fleeing in different
directions: one group fleeing on foot and the other group fleeing
by car. Although in this paper we do not address the issue of
forming groups according to the tasks to be performed, it seems
logical to form different groups of robots to follow the perpe-
trators and help the authorities. For our scenario, drones with
better autonomy can follow the perpetrators fleeing by car and
drones with better surveillance equipment can follow the perpe-
trators on foot. The drones with good communication hardware
can divide themselves into two groups and each one of these
groups can be incorporated in one of those groups previously
defined to follow the targets to provide communication. After the
assignment of the tasks to each group, it might be interesting
to spatially segregate the groups so that the robots of the same
group can interact with each other without the interference of
nonmember agents in order to autonomously make important
decisions related to the task. This could be done manually by
the authorities, but if we imagine scenarios with dozens or more
robots this would be a slow and tedious task, thus there is the
need of an autonomous segregation algorithm such as the one
proposed in this work.

Note in the last example that each group of drones is not
necessarily formed by drones with the same hardware. In this
work we consider robots to be of the same type if they were
assigned to the same group regardless of its construction or role
in the task. In this paper we consider the segregation of robots to
be an intermediary step in the execution of a task which is given
to the swarm by a high level mission planner. This step might be
needed whenever it is beneficial for the task to have a meeting of
the robots of the same group to make collective decisions before
actually executing the task.

We envision automated systems that use heterogeneous
swarms of robots to perform multiple independent complex
tasks. Those systems could be built by combining three hierarchi-
cal layers. In the first layer Multi-Robot Task Allocation problems
(MRTA) [21] are solved to assign robots to groups; in the second
layer the groups spatially segregate to have inner group interac-
tions; and in the third layer each group accomplishes the task that

better matches the capabilities of the group. This paper focuses
in the second layer responsible to solve the problem of spatially
segregate robots.

There are some advantages in spatially segregating robots
in groups before proceeding to do a task. A clear advantage is
that if robots are spatially close it is easier for them to com-
municate with each other, reducing communication interference.
Another advantage is that they will form smaller sub-swarms,
thus reducing the complexity of treating inter-robot collisions.

Unlike other works in swarm segregation, this work proposes
distributed techniques to segregate multiple groups, instead of
only two groups, and presents a formal proof that the system
converges to segregation as desired. Our approach is based on
the consideration of a double integrator robot model and the
use of abstractions [22] and artificial potential functions [23].
Abstractions are virtual entities used to represent a group of
robots. This paper extends the ideas proposed in our earlier
work published in a conference [24], where we used abstractions
and an artificial potential function to segregate groups of robots
disregarding collisions among the robots.

This paper is organized as follows. The next section discusses
some related work in the field and the contributions of this work.
Section 3 gives a background and formally defines the problem
while Section 4 presents our proposed solution. Simulations and
experimental results are presented in Sections 5 and 6, respec-
tively. Finally, in Section 7 we conclude and propose possible
avenues for future work.

2. Related work

Given the recent technological advances that made it possible
to construct robotic swarms and the vast number of possible
applications, we can predict that swarms will play an important
role in the society of the future. In this section we discuss some
of the important related works previously developed in swarm
robotics.

There are several ways to formulate control laws to coordi-
nate a multi-robotic system to accomplish a task. For example,
one could individually guide each robot to a desired position so
that the desired coordination is achieved. This is unpractical or
even impossible depending on the number and capabilities of
robots and operators and the task to be accomplished. A better
solution is to endow the robots with autonomous capabilities so
that they autonomously make decisions and navigate themselves
over the environment. The autonomous control of robots can
be subdivided into: offline design of behaviors and embodied
evolution [25]. Offline design are those sets of control laws that
are embedded into the robots before they are deployed and can
be activated when a certain emergent behavior of the swarm
is needed to accomplish a task. Embodied evolution deals with
robots that can change their control laws on-the-fly according
to the requirements of the task. In this work we propose an
offline designed control law that can be embedded in robots and
activated whenever it is required by a task. The advantage in our
design in comparison to a pure embodied evolution approach is
that we can formally prove that with our controller the proposed
behavior will emerge, which means it will always happen, what
is not usually the case in embodied robotics systems, as it is the
case in [26,27] and [28]. Nonetheless, we believe the evolution
based approaches might be used together with our method in real
applications in which our work can be used as an intermediary
step between the high-level decision on the composition of the
groups and the low-level execution of the tasks by each group.
Once the members of the groups are properly chosen it might
be necessary that the robots of the groups get together before
the execution of the task to communicate and take decisions
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regarding this execution. In this case, it makes sense to activate
a segregative behavior so that the members of the groups can
exchange information without the interference of non-members
agents. Thus, our controller can be used to guarantee that the
groups will be segregated in the way required by the application
before proceeding to actually do a given task. Next, we review
some further important work in autonomous control.

2.1. Homogeneous robots and abstractions

Behavior-based models were the first used to control vir-
tual swarms in the context of graphic computation [29]. These
models define behaviors that are activated in preestablished con-
ditions. In [30] behavior based models are used to control a
group of robots, so that robots keep a desired formation. In these
cases, the robots are considered to be identical agents, forming
homogeneous groups.

Some of the algorithms used in homogeneous swarm coor-
dination are based on artificial potential functions, where goals
are attractive areas and obstacles are repulsive. In [31], potential
functions are used to avoid collisions between robots while these
robots move together. In [32] and [33] artificial forces are used
to make robots spread along complex curves maintaining separa-
tion between robots. There are several other related approaches
such as those based on the use of fluid dynamic equations to
coordinate the group motion, [34–36] and more recently, in [37].
This work also uses potential functions and the details will be
described in Section 3.3.

Some researchers have addressed the problem of controlling
large robot groups by mapping the original problem into a prob-
lem in a lower dimensional space. In [22], virtual structures called
abstractions are created to model a group of robots. When such
structure is created, one can control a group of robots as if the
whole structure were a single entity, which facilitates the prob-
lem of navigation of multiple robots. Other works, such as [38]
and [39], have also used this notion of abstractions in the motion
of multi-robot systems. This structure will be used here as well
and it will be detailed in Section 3.1.

2.2. Heterogeneous robots

The study of heterogeneous systems has attracted the atten-
tion of different research groups more recently.

A nice example of such system is the project Swarmanoid [40],
where aerial robots work together with ground robots to accom-
plish a given task.

In [41] and [42], heterogeneous robots are used in an area
coverage task. The robots are different in the sense that the robots
have different range in their sensing capabilities.

In [43], a communicating network with heterogeneous robots,
aerial and ground robots, working as signal routers is presented.
These robots move in the environment while maintaining the
network connected.

Recently, in [44] a decentralized navigation method for hetero-
geneous swarms of robots with limited field of view is proposed.
They propose a leader-following algorithm that allows the swarm
to maintain connectivity during navigation where robots have
different sensing ranges, fields of view, maximum velocities and
accelerations.

A great advantage of heterogeneous robot swarms is the flex-
ibility to divide the swarm into different groups so that each
group of robots with certain common characteristics perform
tasks that are better suited to its characteristics. In this context,
heterogeneous swarms might be more likely to achieve better
performance in comparison to homogeneous swarms. For robots
with different characteristics to be used and perform their tasks,

it may be necessary to physically separate the swarm into groups
containing only robots of the same type, so that these robots can
perform the task proposed for their group.

This problem of spatially separating robots of different types
in a heterogeneous swarm is the focus of this work. This is the
so-called swarm segregation problem. We show some works that
aim to solve this problem next.

2.3. Segregation in robot swarms

In [45], a scheme to coordinate multiple robots is proposed
where clusters of robots are formed hierarchically and those
clusters are coordinated using the hierarchy to reach a desired
formation. A fully actuated single integrator robot model is used
and the control is done in a reactive centralized fashion. The
scheme can be used to deal with the segregation in robot swarms
although it is unclear if the scheme is scalable for swarms with
lots of robots and groups.

An algorithm that deals with segregated navigation for sin-
gle integrator robots in multiple groups is proposed in [46].
This algorithm is inspired by the concept of velocity obstacles,
where robots can only choose velocities that will not result in
collision and maintain segregation while navigating through the
environment.

A theoretical foundation to make swarms of robots rendezvous
at multiple locations is proposed in [47]. This foundation could
be used to make groups of robots segregate although in this case
robots aggregate based solely on their initial positions and a map
with attraction basins is needed.

The most relevant works that deals directly with swarm seg-
regation are [48–52] and [53].

In [48] a centralized algorithm capable of segregating robots
is developed, based on the Brazilian nut effect. When a container
with a big sphere and a lot of smaller spheres is shaken, the big
sphere goes up even when it is denser than the other spheres.
Similarly, a mixture of different size particles will segregate by
the size of the particles when it is shaken. This is the effect called
the Brazilian nut effect [54].

In the work of [48], despite robots having the same size, they
simulate the behavior of different sized particles. In [50], this
approach is implemented in e-puck robots successfully. A stability
proof for the proposed controller is not shown.

In [52] a study is presented with robots that differ in their
dynamics. The swarm is divided in two groups, one less maneu-
verable and other that can be accelerated faster than the first
group. Segregative patterns emerge naturally with the proposed
dynamics. This is the only work found in the literature in which
the difference in the heterogeneous swarm is in the dynamics of
the robots. Also, no convergence proof is shown.

In [53] a centralized algorithm is developed for robots mod-
eled as single integrators. The algorithm is based in convex opti-
mization, computing the convex hulls of each group and then seg-
regating groups until there are no intersections among the convex
hulls. A formal convergence proof to segregation is shown for
single integrator robots disregarding collisions among robots in
the proof even though a collision avoidance scheme is proposed.

Recently, in [55] a decentralized algorithm is proposed for
single integrator robots. This approach is inspired on the Particle
Swarm Optimization method (PSO) and its interesting in the
sense of not requiring global information to converge although no
convergence proof to segregation is shown. Our work is mostly
related to the works that deal with the segregation problem
and also use the double integrator robot model, these are [49]
and [51].

In [49], an artificial potential function based on the biological
differential adhesion cellular model is used. This was the first
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work to reach segregation in a distributed way to appear in
the literature. The convergence proof for segregation is shown
for two groups of robots. In [51], a similar approach is shown,
but for several groups of robots. Stability proof is shown, but
convergence to segregation is not shown, which means that it
may not always occur.

The segregation problem in swarms of robots is indeed a
relevant problem in the field and it has been recently studied
by different research groups. This work was motivated by the
fact that none of the works found in the literature present a
controller that can reach segregation in swarms of robots with
double integrator agents, multiple groups of robots, integrated
collision avoidance algorithm and formal proof of convergence.

2.4. Contributions

In this work a new segregation controller is proposed. In fact,
this is an extended version of our conference paper [24]. In [24]
the main contribution was a controller that achieves segregation
for multiple groups of robots along with a convergence proof that
guarantees that segregation will always occur. In [24] collisions
between robots were totally disregarded.

In this paper we also propose a new approach to deal with
inter-robot collisions while maintaining the convergence proof.
We also provide more details regarding the proposed segregation
controller. With the new collision avoidance scheme, a practical
issue has arisen: in order to maintain the states of abstractions
as desired, in some cases robots reach velocities much higher
than the velocity of the mean of its abstraction, which is an
undesired behavior. Thus, we also propose a scheme to treat this
issue that mainly arises after collisions have been dealt with.
This scheme could also be potentially useful in other scenarios
that robots have undesirably acquired high velocities for some
reason. In addition, experiments with real robots, with the new
collision avoidance scheme, are shown for the first time. In this
paper, three experiments are shown: one without the addition
of intentional errors and two with the addition of intentional
errors to show how the proposed controller is robust even when
localization errors are expressive.

In comparison to other previously proposed distributed ap-
proaches such as [49] and [51], our controller may not need
information from all the robots of the swarm. As it will be clear
in the text, in most cases the robots need information from only
a subgroup of the swarm.

3. Setup

Consider
∑M

j=1 Nj holonomic mobile robots moving freely in a
2D plane with position of each robot given by the vector

qk
j =

[
xkj
ykj

]
k = 1, 2, . . . ,Nj. (1)

Assume these Nj robots belong to a single group j out of
M possible groups. The index j indicates to each group a robot
belongs, j = 1, 2, . . . ,M , Nj indicates the number of robots in
group j and k = 1, 2, . . . ,Nj are the robots of group j.

Consider the double integrator model for each robot:

q̇k
j = vk

j , v̇k
j = uk

j k = 1, 2, . . . ,Nj, (2)

in which uk
j is the control input of robot k that belongs to group

j.
Our goal is to devise control laws that allows this heteroge-

neous group of double integrator robots to segregate into the M
homogeneous groups.

Remark 1. For the sake of simplicity in the presentation of the
proposed methodology we consider mobile robots in a 2D plane.
However, it is straight forward to apply our approach in 3D by
considering an additional z component in the position vectors. In
Section 5 we present simulations in 3D environments to show the
scalability of the method.

Remark 2. In this paper we will design a controller for robots
with the double integrator dynamics model (Eq. (2)) as in [49]
and [51]. Nonetheless, the same controller can be used consid-
ering other models such as the differential drive model in a 2D
plane. A feedback linearization technique can be used in order
to apply the controller designed for double integrator dynamics
model in robots with the differential drive dynamics model. For
the sake of simplicity, in this remark we omit robots and groups
indexes. Consider the differential drive dynamics model⎧⎨⎩ẋ = v cos θ

ẏ = v sin θ
θ̇ = w

, (3)

where θ and w are the rotation angle and rotational velocity,
respectively. We are assuming actuation in acceleration, therefore
differentiating ẋ and ẏ in (3) we have that{
ẍ = a cos θ − w v sin θ
ÿ = a sin θ + w v cos θ , (4)

where a = v̇ is the linear acceleration of the robot. Choosing a
point (xa = dacosθ + x, ya = dasinθ + y) at a distance da of the
center of the robot we have{
ẋa = ẋ − daw sin θ
ẏa = ẏ + daw cos θ (5)

and{
ẍa = ẍ − da Υ sin θ − daw2 cos θ
ÿa = ÿ + da Υ cos θ − daw2 sin θ , (6)

where Υ = ω̇ is the angular acceleration. Substituting (4) in (6)
and considering its matrix form, we have[
ẍa
ÿa

]
=

[
cos θ −da sin θ
sin θ da cos θ

]
  

A

[
a
Υ

]


B

+C (7)

where

C =

[
−w v sin θ − daw2 cos θ
w v cos θ − daw2 sin θ

]
. (8)

Thus,[
a
Υ

]
=

[
A
]−1 {

−C + uv
}

(9)

where the control input uv is the same that would be used to
drive a double integrator robot:[
ẍa
ÿa

]
= uv. (10)

Therefore, with this feedback linearization technique we can use
the controller we will propose for double integrator dynamics in
differential drive robots. Similar approaches can be devised for
robots with different dynamics.

Before we formally state the segregation problem addressed
in this work, we need first to describe our abstractions.
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3.1. Abstractions

Some approaches commonly used to control robot swarms
treat the swarm, or part of it, as a single virtual entity. Usually
in this type of approach it is easier to control the swarm, even
though one might have less control over individual robots. In this
work an approach of this class is used and the entity representing
the group is called abstraction.

In [22] a large number of robots is controlled by means of an
abstraction, mapping the configuration space into a space with
lower dimension. In this work, we define an abstraction like the
circular one presented in [22] to represent each group of robots.

Each abstraction has state variables associated with the mean
of the positions of the robots and the covariance matrix of the po-
sitions of the robots belonging to the same group. The covariance
matrix related variable quantifies the dispersion of a group.

The mean of the positions of each group is given by

µj =
1
Nj

Nj∑
k=1

qk
j . (11)

The total number of robots in the system is then given by
∑M

j=1 Nj.
Throughout this paper, superscript indexes k and l are used as

robot indexes and subscripts i and j are used as indexes of groups
(abstractions).

In this paper, for the sake of simplicity, robots are always
considered to be in a 2D plane. As it might be clear along the text,
our results are easily extended to higher dimensions. Therefore µj
is given by:

µj =

[
µx

j

µ
y
j

]
, (12)

in which µx
j and µy

j are the components x and y of µj , respec-
tively.

Each abstraction is made symmetric, defined by a circle. The
third variable associated with each abstraction is given by

σj =
1
Nj

Nj∑
k=1

[(xkj − µx
j )

2
+ (ykj − µ

y
j )

2
], (13)

and reflects the dispersion of robots in relation to the mean of
the group.

The configuration space of a system with Nj planar robots is
given by Q ≡ R2Nj [56]. The variables of each abstraction define
the map:

φj =

⎡⎢⎢⎣µ
x
j

µ
y
j

σj

⎤⎥⎥⎦ . (14)

Thus:

φj : Q → G ⊂ R3, (15)

in which the dimension of the manifold G is not dependent of the
quantity of robots in the group.

The variables of the abstraction implicitly define a circle Cφj
that contains all robots of the group. The center of this circle is
the mean of the positions of the robots and the radius is given by√
Njσj:

Cφj = B(µj,
√
Njσj), (16)

where B(a, b) defines a ball centered in a with radius b.
Note thatqk
j − µj

2
≤

Nj∑
k=1

qk
j − µj

2
= Njσj, (17)

Fig. 1. Circular robots divided in 3 groups of 3 robots.

which impliesqk
j − µj

 ≤
√
Njσj. (18)

Eq. (18) means that, by construction, all the robots associated
with φj always remain inside the abstraction Cφj .

Other shapes of abstractions are possible, such as ellipses and
squares in the 2D plane, as presented in [57]. In this work, a
simple circular abstraction is used because with this abstraction
it is guaranteed that all robots will always stay inside it, this fact
will help in the convergence proof in Section 4.3.

3.2. Problem definition

Now that abstractions and robot models are defined, we can
formally present the segregation problem.

Problem definition: Consider
∑M

j=1 Nj robots of M types with
dynamic model given by (2), devise individual control laws that en-
force the robots to stay inside their abstractions and each abstraction
associated with the robots converge to a state in which:⋂
j={1,...,M}

Cφj = ∅. (19)

When segregated, all robots of the same type will stay together
while separated from robots of other types.

Fig. 1 shows a segregated system according to our definition,
in this figure robots of the same group have the same color and
are inside the same abstraction. Lines connect the centers of the
abstractions.

3.3. Artificial potential function

This section reviews a potential function proposed in [23]. The
control law to be derived in this work is based on the artificial
forces derived from this potential function. This function has an
interesting property of having a finite cut-off, this means that
there will not be any virtual force between agents that are very
far from each other. This helps giving a local property to the seg-
regation algorithm under some conditions. The potential function
that was used in both [49] and [51] to achieve segregation does
not have this property.

In the original context, the potential function proposed in [23]
was applied directly in the individual robot controllers to achieve
flocking behavior. In this work this function will be applied to
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control the center of each abstraction. Thus, we consider the
multi-agent system in which the abstractions are the agents.

Before presenting the potential function, the definition of a
non-negative mapping is required so that the potential function
is differentiable everywhere. This mapping is called σ -norm:

∥z∥σ =
1
ϵ
[

√
1 + ϵ ∥z∥2

− 1], (20)

in which ϵ is a parameter that acts as a gain and is fixed through-
out this work and z is the variable being mapped.

Now we can present the artificial potential function:

V (µ) =
1
2

∑
j

∑
i̸=j

ψα(
µi − µj


σ
), (21)

in which

ψα(z) =

∫ z

dα
γα(s)ds, (22)

γα(z) = ρh(z/rα)
c(z − dα)√
1 + (z − dα)2

, (23)

in which c is a constant, dα defines the global minimum of ψα
and dα = ∥d∥σ .

The parameter rα defines the finite cut-off rα = ∥r∥σ . It means
that if two agents are in a distance greater than rα from each
other, there will not be any repulsive or attractive artificial force
between them.

Function ρh(z) is called a bump function and smoothly varies
between 0 and 1:

ρh(z) =

⎧⎨⎩ 1, z ∈ [0, h)
1
2

[
1 + cos(π ( z−h

1−h ))
]

z ∈ [h, 1]
0, otherwise.

(24)

Using the artificial potential function, the following forces can
be obtained:

F i =

∑
j∈Bi

γα(
µi − µj


σ
)nij  

−∇µiV (µ)

+

∑
j∈Bi

ρh(
µi − µj


σ
/rα)(µ̇j − µ̇i)  

velocity consensus

(25)

in which,

nij = (µj − µi)/
√
(1 + ϵ

µi − µj
2). (26)

In (25), the term indicated as velocity consensus is used so that all
agents have the same velocity when the artificial force is close to
zero. This can be seen as a damping term. Bi is the set of neighbors
of group i. Those neighbors are those groups in which the center
of their abstractions are in a distance smaller than r from the
center of abstraction i.

Fig. 2 shows an example of (22) and (23). Parameter c acts as a
gain, while parameter h modifies the smoothness of the force. For
any two agents, the force of repulsion/attraction will fade when
they are exactly at the desired distance d and when the distance
between them is greater than r .

An important Lemma regarding the function in (21) is given
below:

Lemma 1. If d < r <
√
3d, all local minimum of V (µ) implies in

the formation of a α-lattice [23].

Fig. 2. Parameters: c = 0.02, h = 0.4, dα = 8, rα = 1.5dα . (a) Artificial
Potential between two agents versus the distance between them. (b) Artificial
force between two agents based on the gradient versus the distance between
them.

These structures (α-lattices) are lattice shaped in which each
vertex is at the same distance d of each other vertex belonging
to its neighborhood. An example of an α-lattice can be seen in
Fig. 1, in which the α-lattice is a triangle. Those formations must
satisfy the set of algebraic restrictions given byµi − µj

 = d ∀j ∈ Bi. (27)

The formation of α-lattices, proven in [23] is crucial in the con-
vergence proof to segregation shown in Section 4.3.

4. Robot controller

The proposed control algorithm is based on the use of abstrac-
tions to represent each group of robots and an artificial potential
function to command the motion of such abstractions.

In order to design our individual controllers it is important to
relate the motion of the abstraction with the motion of the robots.
Thus, differentiating (14)

φ̇j = Dφjq̇j, (28)

where qj = [q1
j
T
, . . . , q

N j
T

j ]
T . By using (11), (13) and (14) we can

obtain Dφj:

Dφj =
1
Nj

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 2(x1 − µx
j )

0 1 2(y1 − µ
y
j )

...
...

...

1 0 2(xNj − µx
j )

0 1 2(yNj − µ
y
j )

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

. (29)

Since we have robots with double integrator dynamics, we need
a relation between the abstraction motion and the robot acceler-
ation. By differentiating (13) twice we have

σ̈j =
2
Nj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1j − µx
j

y1j − µ
y
j

x2j − µx
j

y2j − µ
y
j

.

.

.

x
Nj
j − µx

j

y
Nj
j − µ

y
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

q̈j + 2σ ′

j , (30)
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where,

σ ′

j =
1
Nj

Nj∑
k=1

(ẋkj − µ̇x
j )

2
+ (ẏkj − µ̇

y
j )

2, (31)

in which q̈j = [ẍ1j , ÿ
1
j , . . . , ẍ

Nj
j , ÿ

Nj
j ]

T . Now, we can write

φ̈j = Dφjq̈j +

⎡⎣ 0
0

2σ ′

j

⎤⎦ . (32)

In order to cancel the dynamics that have emerged in (32)
and consequently be able to directly control the states of the
abstraction, we propose a controller for all the robots of group
j:

uj = DφT
j (DφjDφT

j )
−1

⎧⎨⎩−

⎡⎣ 0
0

2σ ′

j

⎤⎦ + ũj

⎫⎬⎭  
Sj

+N (Dφj), (33)

in which φj is the abstraction map with robot positions given by
qj . Based on (2) we have q̈j = uj , in which uj = [(u1

j )
T , (u2

j )
T , . . . ,

(u
N j
j )T ]T . Note that each robot can compute their part of controller

(33) without having to compute the controller for all robots in
its group. The virtual input ũj must be designed to control the
abstraction state. The term N (Dφj) is defined in the null space of
Dφj and will be responsible for a collision avoidance scheme and
will be defined later, in Section 4.1. This term will be null when
robots have no risk of colliding to each other.

We have that,

det(DφjDφT
j ) =

2σj
(Nj)3

, (34)

so as long as σj ̸= 0, this matrix inverse always exists. From (32),
applying the individual control laws defined by the components
of uj in (33) in every robot, the abstraction state will evolve
according to

φ̈j = ũj, (35)

in which ũj is a virtual input to abstraction j and is now defined
by:

ũj =

[
Uµ

j
Uσj

]
. (36)

The term Uµ

j is an artificial force that guides the mean of the
positions of the group and Uσj determines the evolution of the
size of the abstraction. The design of Uµ

j and Uσj will determine
if the approach will be successful. The artificial force to segregate
the groups, as defined in Section 3.3, is given by

Uµ

j = F j, (37)

where F j is defined according to (25) so that the abstraction
centers will form α-lattices.

To control the size of each abstraction, we propose a controller
Uσj so that each abstraction converges to a desired size. The
desired size σ des

j is such that, when all abstractions reach this
size and the α-lattices are formed, the system will be considered
to be segregated according to our definition. We know that each
abstraction radius is given by Rj =

√
Njσj. Therefore, we should

design σ des
j so that the radius Rj of each abstraction will be smaller

than half of the distance d, where d is the size of the edges of the
α-lattice, as follows

σ des
j <

d2

4Nj
. (38)

We propose now the controller Uσj :

Uσj = σ̈ des
j + k1(σ̇ des

j − σ̇j) + k2(σ des
j − σj), (39)

in which k1 and k2 are properly designed positive gains and

σ̇j =
2
Nj

Nj∑
k=1

[(xkj − µx
j )ẋ

k
j + (ykj − µ

y
j )ẏ

k
j ]. (40)

We can make σ des
j constant which implies that σ̈ des

j and σ̇ des
j are

equal to zero.
Finally, in the absence of imminent collisions, each robot

will be guided by the individual control laws from (33), with
N (Dφj) = 0 and ũj given by (36), (37), (38) and (39). After some
simple manipulation, the elements of Sj related to robot k in (33)
can be written as:

Sk
j = Uµ

j +
(qk

j − µj)

σj
[−2σ ′

j − k1σ̇j + k2(σ des
j − σj)]. (41)

The gains k1 and k2 will be fixed for all abstractions. Without
treating collisions, we then have the individual control law:

uk
j = Sk

j , (42)

meaning this is the pure segregation controller for robot k, dis-
regarding the collision avoidance scheme, which will be zero in
situations where no imminent collisions are detected.

If we consider the collision avoidance scheme, the complete
controller is defined as

uk
j = Sk

j + N (Dφj)k. (43)

The individual control laws (Eq. (42)), when the collision
avoidance scheme is not being used, depends on the state of the
robot itself, on the state of the abstraction of the robot and on
the states of neighboring abstractions. This control law does not
depend on the states of robots and abstractions that are far from
the robot being controlled, i.e. outside neighborhood Bi defined
in Section 3.3 thanks to the finite cut-off property of the artificial
potential field.

If we consider the collision avoidance scheme (Eq. (43)), robots
will also need information about all robots that belongs to the
groups that are involved in the collision being treated as we will
show in the next section.

4.1. Collision avoidance

The proposed control laws until now were designed to control
point robots, that is, they do not consider robot sizes. To make this
proposal more feasible to be applied in actual robots, the size of
each robot must be considered and a collision avoidance scheme
must be used.

In order to guarantee that the collision avoidance scheme will
not interfere in the convergence to segregation, which is our
primary goal, we will consider a controller in the null space of
Dφj. This term is related with the matrix N (Dφj) pointed out in
(33) and (43).

In [38] a similar approach is used, also in the null space of
Dφj, however using aggregations of three arbitrary robots to avoid
collisions. When a robot is in imminent collision, two other robots
are chosen to ‘‘correct’’ the state of the abstraction while the robot
in imminent collision changes its route to avoid collision. Those
grouping are based on the distances among the three robots taken
two by two.

In this work, we propose a different scheme, where those
aggregations are not needed. We consider the null space of the
whole group of the robot in imminent collision. We use the
projection:

N (Dφj) = (I − DφT
j (DφjDφT

j )
−1Dφj)ûj = N ûj, (44)
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where I is the identity matrix.
This new controller term is only activated if an imminent

collision is detected. This term will be equal to zero if none of
the robots are in imminent collision in the system. We define
two conditions to be satisfied so that a robot is considered in
imminent collision. First, we check if robots are close enough, i.e.qk

i − ql
j

 < 2Rb + δ. (45)

In this work, we consider circular robots with radius Rb and a
safety factor δ.

Moreover, we check if robots are in trajectories that will result
in collision, i.e.

(q̇k
i − q̇l

j)
T (qk

i − ql
j) < 0. (46)

Indexes i and j indicate to which group those robots belong and
indexes k and l indicate which robots are in imminent collision.

Therefore, the individual control laws when there is a robot in
imminent collision are determined by:

uk
j = Sk

j + (I − DφT
j (DφjDφT

j )
−1Dφj)ûj . (47)

Vector ûj is chosen to guarantee absence of collisions as shown
next.

As robots are actuated in acceleration, one should search for
new accelerations that generate collision free trajectories. This is
done based on Torricelli’s equation of motion

v2f = v20 + 2a∆s, (48)

where vf is the final velocity of the robot in consideration, v0 is
the initial velocity, a is the acceleration and ∆s is the difference
in the displacement in a given time interval.

To obtain the acceleration a so that robots in imminent col-
lision do not collide, we consider a conservative approach using
vf = 0. This means that, in the worst case, both robots should
stop moving right before collision. We then define ∆s as half the
distance between two robots being treated, minus the radius of
the robots

∆s =
1
2

qk
i − ql

j

 − Rb, (49)

assuming both robots with radius Rb. Considering the acceleration
components a of robot k of group i in the direction of robot l of
group j:

a = (uk
i )

T
(ql

j − qk
i )ql

j − qk
i

 , (50)

and considering the velocity v0 of robot i in the direction of robot
j:

v0 = (q̇k
i )

T
(ql

j − qk
i )ql

j − qk
i

 . (51)

Replacing vf = 0 in Torricelli’s equation, we define the con-
straint

a ≤
0 − v20

2∆s
. (52)

Fig. 3 shows an example with two robots in imminent collision
(robots k and l) that may or may not be of the same group. In this
figure, we highlight ∆s (Eq. (49)), acceleration a (Eq. (50)) and
velocity v0 (Eq. (51)) related to robot k.

Replacing ∆s, a and v0 in (52), we have a constraint for robot
k in relation to robot l:

(uk
i )

T
(qk

i − ql
j)qk

i − ql
j

 ≥

[
(q̇k

i )
T (qlj−qki )qlj−qki


]2

qk
i − ql

j

 − 2Rb

, (53)

Fig. 3. Schematic illustrating the strategy to avoid collisions.

Fig. 4. Graph of Robots in imminent collision.

by analogy, we have for robot l in relation to robot k:

(ul
j)

T
(ql

j − qk
i )ql

j − qk
i

 ≥

[
(q̇l

j)
T (qki −qlj )qki −qlj


]

2

ql
j − qk

i

 − 2Rb

. (54)

Therefore we have two constraints that, if respected all the time,
robots will never collide. In spite of the use of indexes i and j to
treat groups, if two robots of the same group are in imminent
collision, we make i = j and those same constraints will be used
to treat collisions between these robots.

To make the strategy energetically efficient, ûj is minimized
for every group involved:

min
∑
s∈Ωp

ûs
2
,

s. t. (53) and (54),
(55)

where the set Ωp is the set of groups in which there are robots
in imminent collision, and index p indicates the corresponding
connected component in the collision graph (see Fig. 4). In this
graph, each abstraction is a node and there are edges between
nodes that have imminent collisions between robots of their
groups.

Fig. 4 shows an example of a situation where the collision
graph has two connected components (p ∈ {1, 2}), in this sce-
nario, there are two optimization problems to be solved indepen-
dently, one with two groups involved and another one with three
groups involved.

In each optimization problem, we consider in the objective
function all groups in which there are robots involved in immi-
nent collisions. With this information, the problem can be solved
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in a distributed manner as each robot can run a minimization
problem internally.

Constraints of the minimization problem (55) are added for
each pair of robots that comply with conditions of (45) and (46).
If two robots of groups i and j are in imminent collision, for
instance, the objective function of (55) becomes

min
ûi

2
+

ûj
2
, (56)

with constraints given by (53) and (54).

4.2. Implementation issues

After the minimization problem (55) is solved, we have a
vector ûj for each group. This vector changes trajectories of a
robot in imminent collision and potentially of all the other robots
of its group. We have seen in simulations that this can generate
trajectories with undesired high speeds. This effect usually occurs
only after an imminent collision is treated. This effect is perceived
visually as robots ‘‘orbiting’’ the center of its own abstraction to
maintain the abstraction state.

We now propose another controller with the objective of
avoiding the robots to move with velocities much higher than
the velocity of its abstraction mean, i.e. robots will tend to move
cohesively.

This new controller is called velocity dissipation, velocity being
the difference between the velocities of the abstraction mean and
of the robots that belong to this abstraction. This controller is
associated with the collision avoidance controller and is non-zero
only if the collision avoidance controller is zero. That is, if we have
an imminent collision, only the collision avoidance algorithm is
turned on and if we do not have imminent collisions, only the
velocity dissipation controller is turned on. It should be clear that
both controllers are defined in the null space of Dφj so that our
primary goal, segregation, is not impacted.

We define now a future velocity vector
f q̇j = [

f ẋ1j
f ẏ

1
j · · ·

f ẋ
Nj
j

f ẏ
Nj
j ]

T . (57)

This future velocity vector is obtained after integrating each robot
trajectory for one integration step, i.e. the velocity that each robot
will acquire after applying a given ûj as depicted in Algorithm 1.

Algorithm 1 Calculate future robot velocity

Input: Control vector ûj
Output: Future velocity vector f q̇j
1: Calculate N (Dφj) (Eq. (44))
2: Calculate uk

j (Eq. (43))
3: Integrate one step (Using robot model, Eq. (2))
4: Obtain vk

j one step in the future = f q̇j

With f q̇j and mean velocities (µ̇j = [µ̇x
j µ̇

y
j ]

T ) we can now
define a relative velocity vector for group j:
rel q̇j =

f q̇j − 1 ⊗ µ̇j, (58)

where 1 is a column vector given by: 1 = [1, 1, 1..., 1]. Therefore,
in rel q̇j we have the velocities of the robots in relation to the
center of its group’s mean velocity.

We will search for a vector ûj , that, in the next step, will
generate velocities f q̇j that minimizes rel q̇j .

Minimizing those relative velocities in the null space of Dφj
will make robots reduce those potential high velocities dissipat-
ing the velocity of the robots without affecting group formation.
This unconstrained minimization problem is now defined

min
ûj

rel q̇j
2
. (59)

Fig. 5. Trajectories comparison with and without the velocity dissipation
controller. (a) Velocity dissipation controller enabled. (b) Velocity dissipation
controller disabled. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

This minimization problem will generate a vector ûj that will
be added in the null space of the original segregation controller
whenever there is no imminent collisions. One different vector ûj
will be generated for each group of robots.

Note that in many cases, when robots are already moving
cohesively, the minimization problem of the velocity dissipation
controller will generate a trivial all zero vector, because robot
velocities and its abstraction mean velocity are the same. The
velocity dissipation controller has shown to be very helpful in
dissipating high velocities generated after collisions are avoided.

When conditions (45) and (46) are satisfied, the collision
avoidance controller will be non-zero, thus turning off the velocity
dissipation controller.

Fig. 5 shows a comparison between trajectories so we can
qualitatively analyze the velocity dissipation controller. In this
figure, we have six robots divided into two balanced groups (red
and green groups). In both Fig. 5(a) and (b) the same initial
conditions were used and the simulation was stopped at the
same time. In 5(a) the velocity dissipation controller is used and
it makes the trajectories of red robots more cohesive than the
trajectories in 5(b) where the velocity dissipation is not used. In
5(b), when a red robot have to avoid a collision, it accelerates to
a high velocity and starts to ‘‘orbit’’ around the abstraction center
together with all the other robots of its own group to maintain the
group state. In both cases segregation was successfully achieved
without collisions but in the case of Fig. 5(b) an undesirable
‘‘orbiting’’ behavior occurred, this can be better visualized in the
video presented in https://youtu.be/UvjgwlV_PCE.

4.3. Controller analysis

In this section, we formally analyze the proposed controller to
show its capability in solving the problem of segregation in robot
swarms.

Theorem 1. The application of individual control laws given by (43)
for a group of

∑M
j=1 Nj robots with dynamics given by (2) divided in

M groups will enforce the convergence of the multi-robot system to
a state where all robots of a same group are grouped together while
segregated from robots of other groups, i.e, the problem defined in
Section 3.2 will be solved if (i) solving (55) to avoid collisions is
always feasible; (ii) the system does not start in a local maximum
or saddle point of V (µ); (iii) the robots start at different positions in
the environment; and (iv) k1 and k2 in (39) are properly tuned.

Proof. The approach was constructed to guarantee the solution
of the problem; this means that the proof is straight forward. The
analysis is conducted in two parts.

https://youtu.be/UvjgwlV_PCE
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Fig. 6. Simulations in MATLAB, each group has Nj = 5 robots. From top to bottom: (a) M = 4 groups. (b) M = 8 groups. (c) M = 12 groups. From left to right, 4
snapshots of initial to final iterations. The snapshots also highlight the abstraction size and the formation of the α-lattices.

Fig. 7. Information of how many groups each robot needs (average) versus
iterations. e.g. With 8 and 12 groups, after the iteration 6000, each robot needs
information of up to 5 neighbor abstractions.

First, we have to prove that all robots in an abstraction will
stay inside it and the abstraction state will converge to the
desired size. The second part is to show that the abstractions will
end separated, without intersections.

Due to the assumptions that the robots do not start at the
same position and the collision scheme in (55) is always feasible
we can assure that the robots will never be at the same position at
the same time. Thus, the determinant of DφjDφT

j is different from
zero and the inverse in (33) always exists, then the motion of the

abstraction will be given by (35). From (39) it should be clear that
if k1, k2 are properly designed the dynamics given by σ̈j = Uσj
will be such that σj converges to σ des

j exponentially [58]. Since
the radius is defined according to Rj =

√
Njσj, we know from

Section 3.1 that the robots of φj will remain inside the abstraction
during all the time.

For the second part of the proof, we consider the proof of
Theorem 1 in [23]. In this theorem, LaSalle’s invariance principle is
used to show that a set of agents with double integrator dynamics
subject to the artificial potential force in (25) (see Algorithm 1
in [23]) asymptotically converges to a configuration which is an
equilibrium of function V . Since we assume that the system does
not start at a local maximum or at a saddle point of V and these
are unstable equilibria we can guarantee that the system asymp-
totically converges to a local minimum of V . By using Lemma 1
(see Section 3.3) we can conclude that the system asymptotically
converges to an α−lattice formation.

As the abstractions converge to the desired size, with all
the robots of the abstraction inside, together with the fact that
the other parameters (see Eq. (38)) were specified to guarantee
absence of intersections among abstractions when they converge
to the α−lattice, the problem of segregation as defined in the
Problem Definition will be solved as t → ∞. □

In this theorem we made some assumptions on the initial
conditions. We consider those assumptions to be plausible in real
scenarios. In real situations, the system hardly begins and stays at
a critical point of V (µ) as these are unstable equilibrium points,
except for the minima which are the solution of the problem. An
example of a critical point would be more than one abstraction
center starting at the same point, it is reasonable to assume that
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Fig. 8. 3D Simulations in MATLAB. Top: each group has Nj = 5 robots and the system has 5 groups. Bottom: each group has Nj = 7 and the system has 20
groups. From left to right, 4 snapshots of initial to final iterations. The snapshots also highlight the abstraction size (bigger spheres). Snapshots are rotated to help
visualization.

Fig. 9. Sequence of snapshots of the unbalanced experiment with 10 real robots. Leftmost snapshot: t = 0, initial position. Middle left snapshot: t = 40 s, first
segregation. Middle right snapshot: t = 73 s, second segregation. Rightmost snapshot: t = 98 s, third segregation. Snapshots also highlight the abstraction size and
different markers for each type of robot.

Fig. 10. Sequence of snapshots of the experiment with 8 real robots with added intentional errors. Leftmost snapshot: t = 0, initial position. Middle left snapshot:
t = 4 s. Middle right snapshot: t = 24 s. Rightmost snapshot: t = 64 s, groups are segregated. Snapshots also highlight the abstraction size and different markers
for each type of robot. Smaller markers show the position of the robots with added intentional errors.

Fig. 11. Sequence of snapshots of the experiment with 13 real robots with added intentional errors. Leftmost snapshot: t = 0, initial position. Middle left snapshot:
t = 9 s. Middle right snapshot: t = 34 s. Rightmost snapshot: t = 72 s, groups are segregated. Snapshots also highlight the abstraction size and different markers
for each type of robot. Smaller markers show the position of the robots with added intentional errors.
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Fig. 12. Evolution of the intersection area related to the simulations of Figs. 6
and 8 and the experiments of Figs. 9–11. (a) Evolution of the intersection area
of the 2D and 3D simulations. (b) Evolution of the intersection area of the three
experiments with real robots.

this will hardly happen in practice and even if it does, this is an
unstable condition. Most approaches based on artificial potential
fields described in the literature rely on the same assumption.

5. Simulations

The proposed controller was first tested using MATLAB [59]
with our model of double integrator, holonomic robots as de-
fined in Section 3. In this section we present three simulation
runs in MATLAB in a two-dimensional space and two simulation
runs in a three-dimensional space. Although our approach was
presented considering a 2D setup, it is straight forward to derive
the same equations in 3D, by adding the third coordinate z. We
presented it in 2D only for the sake of simplicity in the derivation.
Furthermore, we also discuss in this section some advantages
and limitations of our approach. A video of these simulations
together with the experiments of Section 6 can be found in https:
//youtu.be/ox2LFwau1-A.

In all simulations we assume that all robots start with zero
velocity and the robots were positioned according to a random
uniform distribution.

We used the following parameters to define the potential
function: r = 1.4d, h = 0.3, c = 10. Gains k1 and k2 were set to
25 and 0.05, respectively. The desired abstraction size is used as
90% of the desired distance between groups, σ des

j = 0.9d2/(4Nj).
Other parameters, such as the desired distance between groups
(d) and the normal distribution of robots were set in a way that
we can better visually evaluate our approach and are dependent
on the number of groups and robots.

The simulations were stopped after segregation, as defined in
Section 3.2, was visually reached and after the formation of the
α-lattices was visually stable.

In the 2D simulations, we always used 5 robots per group,
although this is not a requirement of our approach. We simulate
4, 8 and 12 groups of robots as shown in Fig. 6. We also show two
3D simulations in Fig. 8 to exemplify that the approach is scalable
to higher dimensions.

Each robot needs information about the position and velocity
of all robots of its own group and of all the robots of neighboring
abstractions.

In order to better depict the local property of our controller in
comparison to the works in [51] and [49], Fig. 7 shows the av-
erage number of groups in neighborhood Bi versus the iterations,
that is, the average amount of information needed for robots from
initial time to the time segregation was reached.

No collision was verified in all the simulations, as desired.

5.1. Discussions

We can see from the simulations that our approach is different
from Kumar’s and Santos’s works and has valuable additions to
the early conference work [24], such as the collision avoidance
scheme. From Figs. 6 and 8 we see that groups have achieved
segregation in various scenarios ranging from 20 to 140 robots.
Note that our initial conditions make the segregation problem
the hardest possible, because we purposely set robots to be very
mixed. If we already have some kind of segregation, the problem
becomes much easier to be solved.

In Fig. 12(a) it is possible to see that the intersection area
between abstractions (19) in the 2D and in the 3D simulations
converge to zero as desired.

We assume that the initial distribution of robots are such that
they are not in a local minimum. If we imagine a scenario of
6 robots divided in 2 groups of 3 robots each, arranged alter-
nately at the corners of a regular hexagon, the system would
not converge to segregation because this is a local minimum.
This hexagon scenario is an unstable critical point and even the
smallest disturbance in any position of any robot would make the
system reach segregation as desired.

Another drawback of our approach is that, in order to maintain
the state of the abstractions, we rely on a nonlinear programming
solver to solve the collision avoidance minimization problem. It
might happen that sometimes it does not find viable solutions.

From Fig. 7, we can see that as the abstractions begin to sepa-
rate, the quantity of information needed for each robot decreases.
This can be better seen with 8 and 12 groups, because with
the chosen parameter and 4 groups, the groups remain mostly
‘‘connected’’.

It is important to note that the collision avoidance algorithm in
practice does not increase the number of information each robot
needs, because usually when robots are in imminent collision
they belong to neighboring groups. In theory, the number of
information needed could increase in scenarios with multiple
groups involved in imminent collisions, which would make robots
need information to run the collision avoidance algorithm from
robots that are outside the neighborhood Bi. In (55) it is necessary
to have information from all the groups in the connected graph
component Ωp.

6. Experiments

The experiments with real robots were performed using the
Robotarium testbed described in [60]. The testbed uses GRITSBot X
robots, which is an improved version of the GRITSBot presented
in [60]. These robots are differential drive robots, meaning that

https://youtu.be/ox2LFwau1-A
https://youtu.be/ox2LFwau1-A
https://youtu.be/ox2LFwau1-A
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Fig. 13. Data plot related to the experiment of Fig. 9. (a) Evolution of
abstractions size errors. (b) Evolution of the minimal distance between robots.

they only have two wheels (non-holonomic robots). We use a
feedback linearization [61] technique so that we can use our
controller, designed for holonomic robots, in differential drive as
show in Remark 2.

We assumed that every robot have access to the information
of its own position and velocity and the positions and velocities
of every robot of its own group and every robot from neighboring
groups.

In the testbed used to perform the experiments, robots do
not have sensors, there is an overhead camera which is used to
estimate the poses of all the robots of the system. Therefore, we
‘‘emulate’’ a decentralized controller: each robot receives infor-
mation (position, velocity, and group) of every other robot in the
system in a centralized way but discards the information of robots
that belong to non-neighbor groups according to the definition of
neighborhood given by the parameter rα (see Section 3.3). As the
used testbed has a very reliable pose estimation system we have
also performed experiments in which we have added intentional
errors in the measurement of the position of the robots to verify
the robustness of the proposed approach.

We performed three experiments: one without the addition of
any intentional errors and two with the addition of intentional
errors in the measurements of the position of the robots. All
experiments were run for 1800 iterations which was equivalent
to 98, 64 and 72 s for the first, second and third experiments,
respectively.

Robots are modeled as a square inscribed in a circle of radius
equal to half of the diagonal of the square. For the purpose of the
proposed methodology the size of the robots is considered to be
the size of the circles.

Fig. 14. Data plot related to the experiment of Fig. 10. (a) Evolution of
abstractions sizes. (b) Evolution of the minimal distance between robots.

The solution of the problems of minimization of Eq. (55) are
obtained with the help of the fmincon function of MATLAB.

In the first experiment, with unbalanced groups, we used 10
robots divided into 4 groups that change composition during
the experiment. With t = 0 s, groups N1, N2, N3 and N4 have
3, 3, 2 and 2 robots, respectively. After 700 iterations, groups
compositions are changed to N1 = 2, N2 = 4, N3 = 2 and
N4 = 2. Finally, after 1300 iterations, groups compositions are
changed to N1 = 2, N2 = 2, N3 = 3 and N4 = 3.

In the second and third experiments we added intentional
errors in the measurements acquired from the overhead camera
from the Robotarium platform. Each robot computes its individual
controller (43) adding intentional errors drawn from a normal
distribution to its own position and to the position of each other
neighbor robot at each time step. The errors have zero mean and
standard deviation of 5% and 10% of the area of the environ-
ment for the second and third experiment, respectively. Note that
neighbor robots of robot i are those in the neighborhood Bi, as
explained in Section 5.

In the second experiment, we used 8 robots divided equally
into 4 groups, without changing groups compositions (M =

4, Nj = 2,∀j).
In the third experiment, we used 13 robots divided into 5

groups in an unbalanced manner, without changing groups com-
positions

(
M = 5,Nj = 3 ∀j ∈ {1, 2, 3} and Nj = 2 ∀j ∈

{4, 5}
)
.

Frames of the first experiment are shown in Fig. 9, for the
second experiment in Fig. 10 and for the third experiment in
Fig. 11.

In Fig. 14(a) we show the evolution of the abstraction sizes
(σ ) for the second experiment. In Figs. 13(a) and 15(a) we show
the evolution of the abstraction size errors for the first and third
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Fig. 15. Data plot related to the experiment of Fig. 11. (a) Evolution of
abstractions size errors. (b) Evolution of the minimal distance between robots.

experiments, respectively, as the desired abstraction sizes (σ des)
changes over time or are different depending on the number of
robots in the group. It is possible to see in Figs. 13(a), 14(a) and
15(a) that the abstractions converge to the desired sizes.

In Figs. 13(b), 14(b) and 15(b) we show the evolution of the
minimal distance between robots for the first, second and third
experiments, respectively.

We can see in the second, third and fourth frames of Fig. 9 and
in the last frame of Figs. 10 and 11 that segregation has occurred.
We can also see that the system has reached segregation accord-
ing to our definition analyzing the evolution of the intersection
area between abstractions (Fig. 12(b)).

In Figs. 13(b), 14(b) and 15(b) it is possible to see that robots
do not collide and when the collision avoidance algorithm was
used, except for some brief moment in Fig. 15. In this brief
moment, there are some points that indicate erroneously the
presence of collisions between robots. We have ignored those
outliers that were in fact caused by a brief error in the localization
of a robot. This brief error in the data can be confirmed watch-
ing the video of this experiment, where no real collisions have
occurred (video can be found in https://youtu.be/ox2LFwau1-A).
This example confirms the robustness of the method against
usual errors in real scenarios.

6.1. Discussions

With real robots, the implementation issues of Section 4.2
were not observed. That is because real robots have limited
velocities. Thus, we chose not to use the velocity dissipation con-
troller described in Section 4.2. Therefore, we use the controller

of Eq. (43) where the collision avoidance scheme is only turned
on in imminent collision situations.

The experiments were important to validate our controller in
real scenarios, where errors due to imperfections are commonly
observed. Imperfections such as packet loss and time delays are
usually observed in real world networks. Information from real
sensors, such as the overhead camera, used for localization are
subject to noise. These issues have direct impact in the infor-
mation actually used by the robots to compute their control
inputs. Furthermore, we can also have imperfections from the
unmodeled dynamics of the differential drive robots and the
discretization of the implementation, given that our controller
was originally proposed for double integrator continuous dynam-
ics. Actuator errors and input saturation may also be a source
of degradation in the real system performance. Finally, differ-
ences in the robots such as small differences in motor power,
in the battery charges, in the construction of the robots, etc.
may introduce unexpected behavior. All these imperfections are
usually disregarded in computer simulations which justifies the
verification of the method in real robots. In the real experiments
performed in this work we could indeed verify some robustness
of the proposed method to errors caused by real world issues.

In the Robotarium testbed, although errors due to imperfec-
tions exist, we can usually assume that the overhead camera
based localization system is quite precise. Therefore, to show
that our controller can be robust even in the presence of more
severe errors we have also performed experiments adding inten-
tional errors to the position of the robots after receiving those
information from the testbed (experiments shown in Figs. 10
and 11). Those experiments can provide indication that the seg-
regation controller will perform well even in other real world
environments where errors and imperfections are usually more
expressive.

It is also important to mention that the experiment with
unbalanced groups could attest that the method is robust to the
dynamic addition and withdraw of robots from groups as long as
σj ̸= 0, in practice, this means that groups should have at least
two robots.

7. Conclusions

In this paper we addressed the problem of segregation in
robot swarms. We proposed a controller that makes the system
reach a state where robots of the same group remain together
while separated from robots of other groups. Our controller is
based on the use of abstractions to represent each group and
an artificial potential function to separate the groups. We have
shown a proof of convergence which allows us to say that seg-
regation will always be reached. We have provided a collision
avoidance scheme that does not interfere with the segregation
controller convergence proof. A velocity dissipation controller was
also proposed to cope with some issues that have arisen with
the collision avoidance scheme. We validated the effectiveness
of the proposed controller by considering both simulations and
experimental results.

Segregation can be seen as an interesting behavior that might
be useful to exhibit in applications that employ heterogeneous
swarms and for some reason have the need of bringing agents
of the same type together. This might be the case when these
agents need to exchange information and take collective decisions
without the interference of agents of the other types.

Even with model uncertainties and external disturbances, the
use of a feedback linearization approach validated experimentally
the controller working with non-holonomic differential drive real
robots, although it was originally proposed for perfect double
integrator dynamics model.

https://youtu.be/ox2LFwau1-A
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We assume the robots are equipped with sensors and com-
munication hardware to determine their own positions and ve-
locities and the positions and velocities of other robots. In order
to implement our controller in real applications it is necessary
to rely on sensors, communication protocols, and probabilistic
estimation approaches, such as EKF (Extended Kalman Filter)
to provide robust robot state estimation. Addressing the issues
related to robot localization and robot–robot communication is
out of the scope of this work. Nevertheless, we have performed
experiments adding intentional errors to show how our controller
behave if we had more expressive errors associated with the lo-
calization of the robots. From those experiments, we can conclude
that as long as the controller parameters are properly set, such as
the desired group size and the desired distance among groups, the
segregation controller can be used in real world scenarios.

Different from the previous works found in the literature that
also consider the double integrator robot model, the proposed
controller may not need global information all the time to reach
segregation. In the proposed null-space scheme that deals with
inter-robot collision avoidance, it might be necessary, although it
is quite unlikely, to have information from all the other robots
of the swarm in a given time step if one wishes to maintain
the mathematical guarantees of convergence. Thus, in this case
one could say the method had to rely on global information at
that time step. Nonetheless, thanks to the finite cut-off of our
potential function the part of the controller related to segregation
convergence depends only on the information of the states of the
neighbor abstractions. Moreover, the part of the controller related
to collision avoidance depends only on the information from the
robots of the groups that have robots in imminent collisions. In
Fig. 4, for example, robots from groups A and B do not need
information from robots from groups C, D, and E. In conclusion,
although we cannot say our method is fully decentralized we
can say that to the best of our knowledge our method is the
only one available in the literature that provides mathematical
convergence guarantees to multiple groups without requiring
information from all the other robots of the swarm in every time
step.

In future work we will investigate solutions to make the pro-
posed controller fully local in the sense of requiring information
from only a small subset of robots of the same group.

It is also important to mention that a current limitation of
the proposed approach is the assumption of absence of envi-
ronmental obstacles. One could think of a manner of modeling
obstacles as virtual groups so that the actual groups were re-
pelled from the obstacles. A manner of doing this without losing
the mathematical guarantees is an open problem left for future
investigation.
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