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Abstract— This article proposes a decentralized control stra-
tegy to reach radial segregation in heterogeneous robot swarms.
The approach is based on a consensus algorithm applied to
virtual points attached to each robot and a heuristics to compute
the distance between the robots and the virtual point. Two
scenarios are considered: when robots have access to a global
reference point and when robots can communicate through a
fixed underlying topology. A convergence proof is presented.
Simulations and experimental results show that our approach
allows a swarm of multiple heterogeneous robots to segregate
radially using local information.

I. INTRODUCTION

Recent interest in algorithms and applications for swarms
of robots can attest the growth of this field. Some recent
examples are an algorithm for swarms of robots that can fly
and drive [1], algorithms and architectures for large swarms
[2], [3] and a testbed for remote robotic experiments [4].
Some other examples deal with the use of heterogeneous
swarms, as in [5] and in [6].

Swarms of robots are becoming more popular each year
due to the perspective of having many simple robots solving
real world complex problems with dexterity, scalability and
fault tolerance. Some applications can make use of swarms
composed of heterogeneous robots to increase the capabil-
ities of the swarm. The heterogeneity of the swarm can be
in the design of the robots or in their roles in the task to be
performed.

There are many applications in which it might be inter-
esting to have a heterogeneous swarm able to divide itself
autonomously into groups containing only homogeneous
robots. It is even more interesting if this division can be done
using only local information in a decentralized manner.

Despite the great interest in robotic swarms, few works
deal directly with the problem of segregating heterogeneous
swarms of robots into clusters, among them we highlight [7],
[8] and [9]. In [7] the problem of segregation for robots with
double integrator dynamics is solved considering only two
different groups and using potential functions. The work in
[8] extends the ideas for multiple groups. In [9] a different
approach is proposed using abstractions to represent each
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group and with the advantage that in some cases robots do
not need global information. Even fewer works deal with the
problem of segregating swarms of robots radially. A system
is said to be radially segregated if all the robots of the same
group are positioned at the same distance from a reference
point while robots from different groups are positioned at
different distances from a reference point. In the work of
[10], robots of different groups have different dynamics and
it seems that the system achieves radial segregation as a
consequence instead of a goal of the approach. In [11] three
mechanisms for sorting robots radially are presented briefly,
in which two mechanisms are based on the fact that under
centripetal forces particles segregate according to their size.
In [12] the same fact is used to develop a controller to
segregate robots radially with only one global information.
The controller of [12] is then implemented in e-puck robots
and shown in [13]. In all of these works, that tackle the
problem of radial segregation, simulations are shown but no
convergence proof is derived.

In this work, we propose a controller for robots with
double integrator dynamics to radially segregate heteroge-
neous swarms. The robots know neither the number of
robots nor the number of groups in the system. Different
from other works we present a method with a proof of
convergence. Thus, we can say that by using our controller
the system will always reach a segregated state. Furthermore,
our controller is local, thus with our controller robots do not
need information from all the other robots of the system
to achieve segregation as most of the works found in the
literature.

II. BACKGROUND AND PRELIMINARIES
A. Problem Formulation

Consider N holonomic robots moving freely in a two
dimensional Euclidean obstacle free environment. The dy-
namics of each robot is given by the double integrator

q̇i = vi, v̇i = ui, i = 1, 2, ..., N ; (1)

in which the position vector of each robot is given by qi =
[xi; yi]

T , the velocity vector by vi = [ẋi; ẏi]
T and the control

input by ui = [uxi;uyi]
T . Each robot is assigned to a group

Nk, k ∈M = {1; 2; ...,M} and M is the number of groups.
Therefore, the system is composed of N robots divided into
the groups N1, N2, ..., NM . Robots of the same group are
considered to be robots of the same type. Throughout this
paper, indexes i and j are used to indicate the robots and
indexes k and l are used to indicate groups.

Also, consider that each robot has a communication radius
c that is the same for all the robots in the system. An example
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Fig. 1. Background and preliminaries Figs. a) Communication radius
example. b) System of 15 robots divided in 3 groups radially segregated. c)
Example of virtual point for a robot.

of this communication radius is showed in Fig. 1 (a), in
which the bigger blue circle shows the radius c for the blue
robot. The communication graph is built by considering the
robots as nodes and defining edges between two robots if
they are in the communication range of one another.

We aim to investigate the problem of radially segregating
autonomous swarms of robots considering only the use of
local information. All the robots should converge to a state
where robots of the same type are positioned at the same
distance with respect to a given point while these distances
are different for robots of different types.

Fig. 1 (b) shows a system with 15 radially segregated
robots divided in 3 groups in which robots of the same group
have the same color. In Fig. 1 (b), dashed circles indicate that
robots have indeed the same distance with respect to a given
point that is represented by the small black circle.

In this paper we present a new approach to radially
segregate swarms of robots. The approach is based on the
control of virtual points associated with the robots. This idea
of virtual points is better described next.

B. Virtual points

Consider that the i-th robot have a virtual point zi associ-
ated with it. Fig. 1 (c) shows an arrow pointing to the virtual
point of a robot. Each virtual point has an angle θi and a
radius ri associated with it. Those variables are the polar
coordinates of the point as seen by a frame attached to the
robot. We assume that each robot’s virtual point is initialized
with a random angle θi and the same distance ri = d, in
which d is a parameter dependent of c and will be defined
in section III-B. Therefore, for the i-th robot of the system we
have that zi = qi +δi, in which δi = [ri cos θi ri sin θi]

T .
The robot dynamics is given by the double integrator (1),
thus to relate the motion of the robot with the motion of the
virtual point we have that

q̈i = z̈i − δ̈i, (2)

and differentiating δi twice, with constant ri, we have that

δ̈i =

[
−ri(θ̈i sin θi + θ̇i

2
cos θi)

ri(θ̈i cos θi − θ̇i
2

sin θi)

]
. (3)

In this differentiation we considered ri as a constant. In our
approach ri will be allowed to change only at some specific
discrete events instantaneously as it will be clear later when
we present an algorithm to execute this change.

In order to achieve radial segregation in the system, we
design a controller for the virtual points considering:

z̈i = ûi, (4)

by enforcing ui = ûi− δ̈i, from (1) and (2). This controller
will be such that all virtual points converge to the same point
eventually.

C. Required Information

Consider the group of all robots in the system: R. Also
consider the previously defined groups of robots of the
same type Nk. We now define an ordered set of groups:
G = {N1, N2, ..., NM}. We assume that this set of groups
is a totally ordered set with a pre-defined binary relation
(<). Consider the mapping that associates each robot to
its corresponding group: h : R → G. As G is a totally
ordered set with a pre-defined binary relation, we can define
a hierarchy such that:

h(RN 1) < h(RN 2) < ... < h(RNM ), (5)

where RNk is any arbitrary robot of group Nk. We also
define that h(Nk) returns the corresponding value to the
robots of group k. We assume that robots do not have the
information of how many groups there are in the system
or how these robots are distributed in groups. Moreover,
although we do not assume the robots know the whole
set order, we do assume that they are able to compute
the result of a comparison with robots of other groups
according to the binary relation (<). Thus, when robot i
(Ri) meets robot j (Rj) they are able to access the result of
the comparison h(Ri) < h(Rj). This ability to compare will
be useful when defining a radius heuristics to dynamically
allocate different radius to different groups (Section III-B).

III. METHODOLOGY

In this work, the main idea consists in using a consensus
based algorithm to drive virtual points attached to the robots
and a heuristics to define the radius, ri, of the virtual point.
Concomitantly, robots spread themselves along the virtual
circles where virtual points rendezvous.

We consider two different scenarios in which we use the
same main idea for radial segregation. The scenarios differ
mostly in the information which is available for the robots
and the communication topology.

A. Consensus Algorithm

In both scenarios the radius heuristics (section III-B) and
the angle controller (section III-C) are used in the same way.
The only difference is in the consensus algorithm. In both
scenarios we use a consensus algorithm as it is usually done
in the context of the multi-robot rendezvous [14]. In this
section we detail how the consensus controllers will differ
from each other.
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1) Scenario 1 - Underlying fixed communication topology:
In this scenario, we consider that robots can communicate
using a fixed underlying topology. Robots do not have the
knowledge of a reference point. This topology must be
connected and it is not dependent of the distance between
pairs of robots. To control the virtual points we use the
following consensus algorithm:

ûi = −
N∑
j=1

aij [(zi − zj) + γ(żi − żj)], (6)

in which γ is a positive gain, żi = q̇i + δ̇i and aij = aji
is given by the elements of an adjacency matrix from an
arbitrary connected communication topology.

2) Scenario 2 - Robots know a reference point: In this
scenario we consider that all the robots know exactly the
location of a reference point. However, in this scenario
robots cannot communicate outside a pre-especified range.
We consider that the reference point is o = [0, 0]T , for the
sake of simplicity.

We use the reference point in the consensus algorithm
as if it were a fixed leader robot positioned at the reference
point. Therefore, the global system configuration is given by:
q̆ = [q1

T , q2
T , ..., qN

T ,o]T . Similarly, we consider also the
extended z̆ and ˘̇z (for z and ż, respectively) in which we
consider ˘̇zN+1 = [0, 0]T and z̆N+1 = [0, 0]T . Thus, the
consensus algorithm used for Scenario 2 is:

ûi = −zi − γżi −
N∑
j=1

aij [(zi − zj) + γ(żi − żj)], (7)

in which aij is given by:

aij = aji =

{
1, if ||qi − qj || ≤ c
0, otherwise. (8)

Note that when the virtual points converge to a rendevouz
state, the distance from a robot to its virtual point will be
the same as the distance from a robot to the reference point.

Note also that (6) and (7) are direct application of common
consensus algorithms [15], [16]. In (6) and (7) we control
virtual point positions to guide the virtual points (z) associ-
ated with all the robots to the same position.

Until now, nothing has been stated in regarding to the
distances between the virtual points and the robots. In the
next section we propose a heuristics to choose those distances
for each robot dynamically to lead the system to radial
segregation.

B. Radius Heuristics

To assign the virtual point radius ri to each robot we
propose a heuristics that dynamically changes robot’s ri
when a robot is able to exchange information with other
robots that are within the communication radius c. In Sce-
nario 1 robots exchange information through the underlying
fixed communication topology (to be able to compute (6))
and also exchange information with other robots within the
communication radius c (to be able to process Algorithm 1).
In Scenario 2 robots only exchange information with other

robots within the communication radius c. The drawback for
Scenario 2 is that all the robots must know a reference point.
This is not a strong limitation since we can always think of
a two-stage solution in which in the first stage a preliminary
consensus protocol might run while the robots stay still in
their initial positions to define the reference point as long as
robots start in a connected topology. The second stage is then
exactly the proposed approach for Scenario 2. In Algorithm

Algorithm 1: Control Algorithm for robot i.
Initialize : hd

i = 0, ri = d;
1 while Active do
2 Broadcast hi, ri, hd

i ;
3 forall qj such that ‖qj − qi‖ < c do
4 Receive hj , rj , hd

j ;
5 if hi > hj then // Robot i is of a group higher

in the hierarchy in comparison to robot j.

6 if rj + d > ri then
7 hd

i ← 0;
8 ri ← rj + d;

9 if hi = hj then // Robots i and j are from the

same group.

10 if rj + d > ri then
11 hd

i ← 0;
12 ri ← rj ;

13 if hj > hi and rj = ri + d then // Robot i saving

information.

14 hd
i ← hd

i ∪ {(hj , rj)};
15 if ∃(hk, rk) ∈ hd

j such that hi > hk and ri ≤ rk
then // Robot i analyzing received

information.

16 hd
i ← 0;

17 ri ← rk + d;

18 Move according to control law (13);

1 we show the local control algorithm for robot i in which
it is possible to see the heuristics to change the radius.

Each robot can perceive other robots within its communi-
cation radius and broadcast its own hi, ri and hdi (line 2).
In Algorithm 1, hdi is used to store information about robots
from other groups and then broadcast this information to
other robots. The robots also receive the broadcasted hj , rj
and hdj from all the other robots within its communication
radius (line 4).

In Algorithm 1, lines 5-8, when a robot i meets a robot j
of a group that is lower in the hierarchy than the group of
robot i (hi > hj), with a radius that is greater or equal to ri,
robot i change its radius to rj plus a fixed parameter d. This
means that robot i, of the group higher in the hierarchy will
move away from the “rendezvous point” thus segregating
from the robot j, of the group lower in the hierarchy.

In Algorithm 1, lines 9-12, when a robot i meets a robot
j from the same group, robot i receives the value of the
radius of robot j if this value is greater than the one robot i
already has. This means that robot j had met another robot
from another group that is lower in the hierarchy and is now
broadcasting this information to robot i.
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Due to the local nature of the approach, there can be
situations where robots are “stuck” in the same radius with
robots of groups with lower order. These situations occurs
when robots converged to the “wrong” circle but do not have
communication with other robots in this circle. To solve these
situations, whenever a robot i communicates with a robot
j of a group higher in the hierarchy that is more external
in relation to the reference point, robot i stores robot’s j
hierarchy (hj) and radius (rj) in a list (lines 13-14).

When a robot i receives the broadcasted list from robot
j, robot i analyzes the list to see if robot j has information
of a robot k that is from a group lower in the hierarchy
than robot’s i group (hi > hk). If yes and the radius
of robot k is greater or equal than the radius of robot i
(rk ≥ ri) then robot’s i radius should increase (lines 15-
17). Informally, it works like one robot told the other: I
have seen a robot with a group hierarchy smaller than yours
with a radius greater or equal to the radius that you have,
then you should increase your radius. This exchange of
information can be better visualized in the video presented
in https://youtu.be/fohz_5DRmbI.

To guarantee that the robots that are “stuck” have meetings
with other robots, we make all robots rotate around the
reference point with a polar angular velocity that depends
on its radius ri. Therefore, as robots rotate with different
angular velocities, they will eventually meet other robots.

When robots are rotating, the robots from an external
radius will eventually exchange information with robots of
immediate internal radius as long as some conditions are
met, as shown next. The constant d regulates the distances
between groups and must be such that:

d < 0.5c. (9)

Equation (9) guarantees that sometimes robots have connec-
tions with at least one robot of an internal group (if an
internal group exists). Given the initial condition ri = d,
if an internal group does not exist, equation (9) guarantees
that robots are able to communicate with at least one other
robot of the system when reaching the circle of radius d.
After updating its radius the robot moves according to the
control law (13).

Now, to control the rotation of the robots around the
reference point and to control the distribution of robots
within the “desired radius” of its own group we define an
angle controller as shown next.

C. Angle Control
It is preferable that robots of the same group distribute

themselves uniformly along the virtual circle which is cen-
tered where the virtual points rendezvous, although it is not
a requirement in the definition of the problem. Thus, we
propose a controller for the dynamics of the angle θi, as
follows

θ̈i = ũi = kpθ̄i + kd
˙̄θi + kβ(ωdi − θ̇i), (10)

in which kp, kd and kβ are positive gains. We also have that

ωdi = kω/ri, (11)

is the desired angle velocity, in which kω is a gain that
regulates the fixed rotation for all robots of the system. Each
robot will move locally to the mean angle in relation to its
left and its right neighbors, as in [17]:

θ̄i =
Leftθi +Right θi − 2π

2
(12)

in which Leftθi = argminθ̃j∈Ω′
j
{θ̃j} and Rightθi =

argmaxθ̃j∈Ω′
j
{θ̃j}. The set Ω is: Ω =

{⋃N
i=1 θi

}
and

Ω′i = Ω \ θi is the set containing the angles θ, of all robots
of the same group of robot i, except the angle of robot i. We
also have that θ̃j is the measure of θj taken with respect to
θi, i.e. θ̃i = 0.

The fixed angular velocity (ωdi ) is always dependent on
the robot radius ri. The angular velocity is responsible
for making robots eventually meet other robots if (9) is
respected.

D. Control Law

We have proposed controllers for three different dynamics:
1) Consensus algorithm to control virtual point positions

and velocities (section III-A);
2) Radius heuristics to dynamically set different radius

for different groups (section III-B);
3) Angle controller to distribute robots of the same group

(section III-C).
By combining those controllers, we can now define the

complete control that will guide the movement of each
robot. First we use the definition of (10) and the heuristics
(Algorithm 1) to completely define (3). Then we use the
consensus algorithm ((6) or (7)) to control the dynamics (4).
Finally, composing (4) and (3) we define (2) and we can
move the robots given by the dynamics of (1). Thus, each
robot will be guided by the control law

ui = ûi −

[
−ri(ũi sin θi + θ̇i

2
cos θi)

ri(ũi cos θi − θ̇i
2

sin θi)

]
, (13)

in which ûi will be either given by (6) or (7) depending of
the considered scenario.

E. Controller Analysis

Theorem 1: Assume the facts:
Individual robots are governed by the dynamics in (1)
with communication radius c and constant parameter
d such that d < 0.5c;

(i)

Groups and a binary relation between groups are
defined in such a way that a strictly totally ordered
set of groups is induced;

(ii)

Each robot i is able to compute if the order of its group
is greater, equal, or less than the order of the group of
any other robot j according to the pre-defined binary
relation when the information about the group of robot
j is made available.

(iii)

Then, by applying the Algorithm 1 in the control of each
individual robot, it is guaranteed that the multi-robot system
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will converge to a radial segregation state as defined in
Section II-A.

Proof: From fact (iii) we can assume that Algorithm 1
can run as all the comparisons can be properly computed.

In Algorithm 1 the motion of the robots is governed by
(13). From (1) and (2) it is clear that the virtual points are
driven by (4). In (4), ûi is determined according to the well-
known consensus protocols in (6) or (7) which leads to the
rendezvous of the virtual points. Given this fact, in order
to show radial segregation we need to show that the radius
ri of each robot i converges to a given value which is the
same value of the radius for robots of the same group and
is a different value when compared to the radius of robots
of other groups.

The rest of the proof employs induction, we first show
that the first group will converge to the circle centered at the
rendezvous point with radius given by d. Then, we follow
to show that the other groups will converge to circles also
centered at the rendezvous point but with radius that increases
accordingly to its group order in the group hierarchy.

According to Algorithm 1, all the robots start with ri = d
and the only possible changes in the radius implies that ri =
λd, where λ ∈ N∗. The changes can only occur when robots
meet within a radius c, which is the same for every robot.
Moreover, a radius never decreases, it might only increase
in case robot i receives the information about the existence
of another robot j of a different group so that hi > hj and
ri ≤ rj or another robot j of the same group so that rj > ri.
As the set of groups is a strictly totally ordered set, and the
changes are given by ri = rj + d for hi > hj or ri = rj for
hi = hj it is guaranteed that the radius of the robots of the
group which is the least element of the set, i.e. h1 < hj ∀j,
never changes, i.e., ri = d which implies in the convergence
to the circle centered at the rendezvous point with radius
given by d.

Now consider the hypothesis: all the robots of group
1, 2, ..., k, where h(N1) < h(N2) < ... < h(Nk), have
converged to the corresponding radius rN1 = d, rN2 =
2d, ..., rNk = kd. According to Algorithm 1 and the strict
total order it is impossible to have a change in the radius
of a robot of group Nk+1 when meeting robots of groups
Nk+2, Nk+3, ..., NM as h(Nk+1) < h(Nk+2) < h(Nk+3) <
... < h(NM ). From this and the initial conditions, ri =
d ∀i, we can conclude that the radius of group Nk+1 must
converge to rk+1 = λd where λ ∈ {1, 2, 3, ..., k + 1}.

We have that d < 0.5c and the desired polar angular
velocity ωdi given by (11) is so that robots moving at
circles with different radius will move with different angular
velocities. Thus, it is guaranteed that robots at the circle
with ri = λd receive information from the other robots
at consecutive circles, i.e. rj = (λ + 1)d as they meet
and share information periodically in finite time while they
move in these circles. Moreover, in the first circle the robots
have also access to the information from robots at the same
circle. Thus, given the scheme of storing and broadcasting
information of robots at consecutive circles in Algorithm
1 and given also the hypothesis of convergence of groups

Fig. 2. Simulations in MATLAB. From top to bottom: (a) N = 24,
M = 8. (b) N = 100, M = 10. From left to right, snapshots of initial to
final iterations. In the middle snapshot of each simulation we highlight the
fixed underlying topology. In the last snapshot we highlight in dashed lines
the circles of the groups after segregation is reached and we also “connect”
with black lines every robot that are within the communication radius in
that instant.

Fig. 3. Mean segregation error of 90 simulations with a varying number
of robots and groups for Scenario 2.

N1, ..., Nk we can guarantee that a robot from group Nk+1

will always receive information about the existence of other
robots at the same circle and the corresponding value h(Nl)
for comparison when ri = λd with λ ∈ {1, 2, ..., k + 1}.
From this we can conclude that it is impossible for a robot
of group Nk+1 to converge to any circle of radius ri = λd
with λ ∈ 1, ..., k. According to Algorithm 1, being aware
of the other robots already in their correct circle implies in
the increment of the radius of the robots of group Nk+1.
Therefore, the only possible circle for convergence is the
one with ri = (k + 1)d.

By induction we can conclude that each robot i of group
Nl will converge to ri = ld, ∀i,∀l. Thus, segregation will
always be achieved.

We also have proposed an angle controller to distribute
robots of the same group uniformly. As the angle controller
only changes robots angles based on the proximity to other
robots and virtual points remain unaltered, it does not inter-
fere with the proof of Theorem 1.

IV. SIMULATIONS AND EXPERIMENTS

In this section we present two simulation runs for Scenario
1 to analyze the proposal in a qualitative manner. For
Scenario 2 we present one of our trials of an experiment
with real robots (using the Robotarium platform [4]) and we
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Fig. 4. Experiment in Robotarium [4]. Robots of the same group have the
same color and form markers. Dashed circles represent the virtual circles
for each group. Left: initial arbitrary positioned robots. Right: robots are
radially segregated.

also present data of 90 simulations to evaluate the proposal
in a quantitative manner.

A video with the simulations and the experiment can be
found at: https://youtu.be/yLZyN9MpC18. In this
video we show the evolution of the mean of information
needed for each robot and the evolution of the segregation
error (according to [12]) and the uniformity error (according
to [11]) related to the simulations of Fig. 2. In the video
we also show the experiment with real robots along with
the evolution of the segregation error of the experiment. In
all simulations we assume that all robots start with zero
velocity and the robots were positioned according to a normal
distribution. In both Scenarios the parameters were: c = 5m,
d = 0.5c − ε, ε = 0.1, γ = 5, kp = 0.01, kd = 0.01,
kω = 0.1, kβ = 10 in which ε is set to guarantee (9).

In Fig. 2 we show two simulations for Scenario 1, one
simulation with 24 robots and the other one with 100 robots.
The underlying topology was arbitrarily set and is fixed and
connected in each simulation.

In Scenario 2 we performed 90 simulations varying the
number of robots and groups ranging from two robots to 100
robots divided in two to 10 groups. Starting with two groups
and one robot per group up to 10 robots and then increasing
the number of groups: 3, 4, ..., 10 groups. In Fig. 3 each line
shows the mean segregation error for 10 simulations, from
one to 10 robots per group and the number of groups is
depicted in the legend.

In Fig. 4 we show an experiment with 15 GRITSBot X [4]
divided equally into 5 groups. The experiment was conducted
for 236s and segregation state was first reached around 100s
after the start. Parameters of the experiment: c = 0.48, d =
0.5c − ε, ε = 0.05, γ = 8, kp = 0.001, kd = 0.005, kω =
0.03, kβ = 0.1. A local collision avoidance algorithm already
implemented in the Robotarium platform [4] was used. After
analyzing Figs. 2, 3 and 4 we can see that in all cases robots
have reached radial segregation. It can also be seen in Fig.
2 that robots do not need information from all robots of
the system to reach segregation. In average robots needed
information of 10.43% and 24.20% of robots in the system,
for the simulation in Figs. 2(a) and 2(b), respectively.

Note in Fig. 2 that robots can sometimes be unevenly
distributed on the virtual circle of its group due to the local
nature of the approach. Depending on the system’s initial
conditions some robots may never meet robots from the same
group and consequently never reach perfect distribution.

Nonetheless, they always reach the desired radius of their
group. This would still be a radially segregated system
according to our definition of the problem.

V. CONCLUSIONS
In this paper we have presented a novel decentralized ap-

proach to radially segregate swarms of heterogeneous robots.
We have shown proof of convergence for two different
scenarios: when robots have an underlying communication
topology and when robots have the knowledge of a common
reference point. In our approach robots do not need infor-
mation about all the robots of the system, as was the case
in some previous works. Future work will focus on collision
avoidance strategies integrated with our controller.
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